[1]
Hui Wang, et.al, A new finite element model for multi-cycle ARB process and experiment verification, MSE A, 726(2018) 93-101.
Google Scholar
[2]
Hailiang Yu, et.al, Nanoporous Al sandwich foils using size effect of Al layer thickness during Cu/Al/Cu laminate rolling, Philosophical Magazine 98 (17), (2018).
DOI: 10.1080/14786435.2018.1447158
Google Scholar
[3]
Z. Yazdani, et.al, A novel method for the fabrication of Al-MMC reinforced by mono-dispersed TiAl3 intermetallic via a 3-step process of CARB, heat-treatment and ARB, JAC 747 (2018) 217-226.
DOI: 10.1016/j.jallcom.2018.03.017
Google Scholar
[4]
Shibayan Roy, et.al, ARB of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties, Materials and Design 36 (2012) 529–539.
DOI: 10.1016/j.matdes.2011.11.015
Google Scholar
[5]
Hailiang Yu, et.al, High Strength and Ductility of Ultrathin Laminate Foils Using ARB and Asymmetric Rolling, Metallurgical and Materials Transactions A 46 (2) (2015) 869-879.
DOI: 10.1007/s11661-014-2640-3
Google Scholar
[6]
Huajie Wu, et.al, Effects of Annealing Process on the Interface of Alternate α/β Mg-Li Composite Sheets Prepared by ARB, Journal of MPT, 254 (2018) 265-276.
Google Scholar
[7]
J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, M. Ferry, Texture balancing in a fcc/bcc multilayered composite produced by ARB, Acta Materialia 123 (2017) 11-23.
DOI: 10.1016/j.actamat.2016.10.023
Google Scholar
[8]
Mathis Ruppert, et.al, Global and local strain rate sensitivity of bimodal Al-laminates produced by ARB, Acta Materialia 103 (2016) 643-650.
DOI: 10.1016/j.actamat.2015.11.009
Google Scholar
[9]
M. Eizadjou, et.al, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by ARB (ARB) process , CST 68 (2008) 2003–(2009).
DOI: 10.1016/j.compscitech.2008.02.029
Google Scholar
[10]
Walid Habila, et.al, Investigation of microstructure and texture evolution of a Mg/Al laminated composite elaborated by ARB, Materials Characterization 147 (2019) 242–252.
DOI: 10.1016/j.matchar.2018.11.010
Google Scholar
[11]
Parisa Darvish Motevalli, et.al, Microstructure and mechanical properties of laminated Al–Cu–Mg composite fabricated by ARB, Bulletin of Materials Science, 40 (7) (2017) 1481-1488.
DOI: 10.1007/s12034-017-1504-z
Google Scholar
[12]
Davood Rahmatabadi, et.al, Fracture toughness investigation of Al1050/Cu/MgAZ31ZB multi-layered composite produced by ARB process, MSE: A 734 (2018) 427-436.
DOI: 10.1016/j.msea.2018.08.017
Google Scholar
[13]
M. Hosseini, et.al, Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB), Materials & Design, 113 (2017) 128-136.
DOI: 10.1016/j.matdes.2016.09.094
Google Scholar
[14]
Muralimohan Cheepu, et.al, Fabrication and Analysis of ARB Process between Magnesium and Aluminum Multi-Layers, Applied Mechanics and Materials, 877 (2018) 183-189.
DOI: 10.4028/www.scientific.net/amm.877.183
Google Scholar
[15]
H. Chang, et.al, Texture evolution of the Mg/Al laminated composite fabricated by the ARB, Scripta Materialia 61 (2009) 717–720.
DOI: 10.1016/j.scriptamat.2009.06.014
Google Scholar
[16]
Frank Kümmel, et.al, Microstructure and Mechanical Properties of Accumulative Roll-Bonded AA1050A/AA5005 Laminated Metal Composites, metals 56 (6) (2016).
DOI: 10.3390/met6030056
Google Scholar
[17]
M. Heydari Vini & M. Sedighi, Mechanical properties and bond strength of bimetallic AA1050/AA5083 laminates fabricated by warm-ARB, CJMMS, (2017).
DOI: 10.1080/00084433.2017.1405539
Google Scholar
[18]
Mathias Göken and Heinz Werner Höppel, Tailoring Nanostructured, Graded, and Particle-Reinforced Al Laminates by ARB, advanced materials, 23 (2011) 2663 – 2668.
DOI: 10.1002/adma.201100407
Google Scholar
[19]
Christopher Schunk, et.al, Superior Mechanical Properties of Aluminum–Titanium Laminates in Terms of Local Hardness and Strength, Advanced Engg Materials, (2018) 1-6.
DOI: 10.1002/adem.201800546
Google Scholar
[20]
Parisa Darvish Motevalli, et.al, Microstructure and Mechanical Properties of Tri-metal Al/Ti/Mg Laminated Composite Processed by ARB, MSE A 628 (2015) 135-142.
DOI: 10.1016/j.msea.2014.12.067
Google Scholar
[21]
Chin Shih Hsu and Qizhen Li, Processing and Characterization of Ti64/AZ31 Multilayered Structure by Roll Bonding, MAAM, 9 (2017) 73-78.
Google Scholar
[22]
Frank Kümmel, et.al, High Lightweight Potential of Ultrafine-Grained Aluminum/Steel Laminated Metal Composites Produced by ARB, AEM, 21 (1) (2019).
DOI: 10.1002/adem.201800286
Google Scholar
[23]
Amir Mashhadi, et.al, Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by ARB (ARB) process, Journal of A & C, 727 (2017) 1314-1323.
DOI: 10.1016/j.jallcom.2017.08.241
Google Scholar
[24]
Juliane Scharnweber, et.al, Microstructure, Texture, and Mechanical Properties of Laminar Metal Composites Produced by ARB, Advanced Engineering Materials, 21 (1) (2018).
Google Scholar
[25]
K Tanaka, et.al, Relationship b/w initial hydrogen absorption properties and microstructures of Mg/Cu super-laminate composites with different ARB cycles, MSE 375 (2018) 012032.
DOI: 10.1088/1757-899x/375/1/012032
Google Scholar
[26]
Z.J. Wang, et.al, Microstructure, texture and mechanical properties of AA 1060 aluminum alloy processed by cryogenic ARB, Materials Characterization 139 (2018) 269-278.
DOI: 10.1016/j.matchar.2018.03.016
Google Scholar