Synthesis and Luminescent Properties of Europium Doped Zirconia Nanoparticles

Article Preview

Abstract:

This paper reports a tunable luminescence of europium (Eu 3+) doped zirconia (ZrO2) nanoparticles as a function of hydrothermal temperature, europium concentrations, time and pH value. The nano-sized Eu doped ZrO2 (Eu:ZrO2) particle was synthesized by hydrothermal method at the temperature of 200 °C and time up to 48 h. The nano-sized Eu:ZrO2 particles have a diameter of about 10 nm. The luminescent properties of nano-sized Eu:ZrO2 particle was enhanced in the sample when high temperature, high Eu 3+ concentration and prolonging hydrothermal time were used at pH 7. These results suggest the use of Eu:ZrO2 nanoparticles followed by thermal annealing in tuning the luminescence of Eu:ZrO2 nanoparticles which have potential applications as phosphors in solid state lighting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-184

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, W. Y. Ching, Physical Review B 49 (1994) 5133-5142.

Google Scholar

[2] E. De la Rosa, L.A. Diaz-Torres , P. Salas , R.A. Rodríguez , Opt. Mater. 27 (2005) 1320-1325.

Google Scholar

[3] V.S. Reddy Channu, R. R. Kalluru, M. Schlesinger, M. Mehring, R. Holze, Colloids and Surfaces A: Physicochem. Eng. Aspects 386 (2011) 151–157.

DOI: 10.1016/j.colsurfa.2011.07.016

Google Scholar

[4] M. A. Sliem, D. A. Schmidt, A. Bétard, S. B. Kalidindi, S. Gross, M. Havenith, A. Devi, R. A. Fischer, Chem. Mater. 24 (2012) 4274-4282.

DOI: 10.1021/cm301128a

Google Scholar

[5] G. K. Sidhu, A. K. Kaushik, S. Rana, S. Bhansali, R. Kumar, Appl. Surf.Sci. 334 (2015) 216-221.

Google Scholar

[6] A. Patra, P. Ghosh, P. S. Chowdhury, M.A. R. C. Alencar, W. Lozano B, N. Rakov, G. S. Maciel, J. Phys. Chem. B 109 (2005) 10142-10146.

DOI: 10.1021/jp050685v

Google Scholar

[7] Q. Lu, F.Y. Guo, L. Sun, A. Li, L.C. Zhao, J. Phys. Chem. C. 112 (2008) 2836-2844.

Google Scholar

[8] Y.S. Vidya, K. Gurushantha, H. Nagabhushana, S.C. Sharma, K.S. Anantharaju, C. Shivakumara, D. Suresh, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, J Alloys and Comp. 622 (2015) 86-96.

DOI: 10.1016/j.jallcom.2014.10.024

Google Scholar

[9] P. Riello, S. Bucella, R. Krsmanoviĉ, S. Meneghetti, S. Pietrantoni, R. Francini, J. Phys. Chem. B 109 (2005) 13424-13430.

DOI: 10.1021/jp050919a

Google Scholar

[10] C. Tiseanu, V.I. Parvulescu, B. Cojocaru, K. Pemartin,M. Sanchez-Dominguez,M. Boutonnet, J. Phys. Chem. C. 116 (2012) 16776-16783.

DOI: 10.1021/jp3040538

Google Scholar

[11] P. Ghosh, A. Patra, Langmuir 22 (2006) 6321-6327.

Google Scholar

[12] X. Qu, H. Song, G. Pan, X.Bai, B. Dong, H. Zhao, Q. Dai, H. Zhang,R. Qin, S. Lu, J. Phys. Chem. C, 113 (2009) 5906-591.

Google Scholar

[13] Y. Liu, S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E Ma, X. Chen, J. Am. Chem. Soc. 134 (2012) 15083-15090.

Google Scholar

[14] MS. Wong, H.C. Huang, J.Y. Ying, Chem. Mater. 14 (2002) 1961-1973.

Google Scholar

[15] N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, S.K. Sanghi, J. Colloid Inter. Sci. 342 (2010) 327-332.

Google Scholar

[16] Q. Chang, J. Zhou, Y. Wang, G. Meng, Advanced Powder Technology 21 (2010) 425-430.

Google Scholar

[17] M. Mizuno, Y. Sasaki, S. Lee, H. Katakura, Langmuir 22 (2006) 7137-7140.

Google Scholar

[18] W. H. Green, K. P. Le, J. Grey, T. T. Au; M. J. Sailor, Science 1997, 276, 1826-1828.

Google Scholar

[19] B. E. Yoldas, J. Mater. Res. 5 (1990) 1157-1158.

Google Scholar

[20] C. Lin, C. Zhang, J. Lin, J. Phys. Chem. C 111 (2007) 3300-3307.

Google Scholar