[1]
Z.F Hu, Heat-resistant steels, microstructure evolution and life assessment in power plants, in: Mohammad Rasul (Ed.), Thermal power plants; Publisher InTech, Shanghai, 2012, pp.195-226.
DOI: 10.5772/26766
Google Scholar
[2]
L. Falata, V. Homolováa, J. Kepiča, M. Svobodab, A. Výrostková, Microstructure and properties degradation of P/T 91, 92 steels weldments in creep conditions, Journal of Mining and Metallurgy, Section B: Metallurgy 48 B (2012) 461-469.
DOI: 10.2298/jmmb120701057f
Google Scholar
[3]
N.H. Lee, S. Kim, B.H. Choe, K.B Yoon, D.I. Kwon, Failure analysis of a boiler tube in USC coal power plant, Engineering Failure Analysis 16 (2009) 2031-2035.
DOI: 10.1016/j.engfailanal.2008.12.006
Google Scholar
[4]
A. Fedorikova, T. Kvackaj, R. Kiciko, R. Bidulsky, P. Petrousek, J. Bidulska, L. Domovcova, Hot compression test of 9Cr-1Mo steel - numerical simulation, Acta Metallurgica Slovaca 22 (2016) 102-110.
DOI: 10.12776/ams.v25i4.1366
Google Scholar
[5]
D.R.H. Jones, Creep failures of overheated boiler, superheater and reformer tubes, Engineering Failure Analysis 11 (2004) 873-893.
DOI: 10.1016/j.engfailanal.2004.03.001
Google Scholar
[6]
Y.Q Deng, L.H. Zhu, Q.J. Wang and F.M. Zou, Study of properties degradation of T23 heat-resistant steel based on microstructural evolution during creep, Steel Research International 77 (2006) 844-848.
DOI: 10.1002/srin.200606470
Google Scholar
[7]
K. Kimura, Review of allowable stress and new guideline of long-term creep strength assessment for high Cr ferritic creep resistant steels, Materials at High Temperature 25 (2008) 121-129.
DOI: 10.3184/096034008x354864
Google Scholar
[8]
A. Zielinski and J. Dobrzanski, Material properties and structure of thick-walled elements made of steel 7CrMoVTiB10-10 after long-term annealing, Archives of Materials Science and Engineering 58 (2012) 5-12.
Google Scholar
[9]
J.N. Dupont, J.A. Siefert, J.P. Shingledecker, Microstructural evolution and mechanical properties of Grades 23 and 24 creep strength enhanced ferritic steels, International materials reviews 62 (2016) 32-56.
DOI: 10.1080/09506608.2016.1207008
Google Scholar
[10]
M.A. Sohail, A.I. Mustafa, A study on damages in alloyed super heater tubes of thermal power station, Indian Journal of Engineering and Materials Sciences 14 (2007) 19-23.
Google Scholar
[11]
F. Masuyama, Advancesin creep-damage life assessment technology for creep strength enhanced ferritic steels, Procedia Engineering 55 (2013) 591-598.
DOI: 10.1016/j.proeng.2013.03.300
Google Scholar
[12]
J. Dobrzanski, J. Pasternak and A. Zielinksi, Evaluation of base material and welded joints designated for membrane wall components made from low-alloy steels in large boilermaker conditions, 9th Liege Conference Materials for Advanced Power Engineering,, Forschungszentrum Julich GmbH, Germany, 2010, pp.390-399.
Google Scholar
[13]
A.K. Ray, K. Diwakar, B.N. Prasad, Y.N. Tiwari, R.N. Ghosh, J.D. Whittenberger, Long term creep-rupture behavior of 813K exposed 2.25Cr-1Mo steel between 773 and 873K, Materials Science and Engineering A 454 (2007) 124-131.
DOI: 10.1016/j.msea.2006.11.020
Google Scholar
[14]
T.H. Nguyen, A.T. Bui, V.T. Nguyen, T.H. Phung, A.H. Bui, Effect of temperature on microstructure and mechanical properties of superheater steel pipe in thermal power plant, Journal of Science and Technology (Technical universities) B 127 (2018) 67-71.
Google Scholar
[15]
L.N. Hierro, V. Rohr, P.J. Ennis, M. Schutze, W. J. Quadakkers, Steam oxidation and its potential effects on creep strength of power station materials, Materials and Corrosion 56 (2005) 890-896.
DOI: 10.1002/maco.200503920
Google Scholar
[16]
B.R. Cardoso, F.W. Comeli, R.M. Santana, H.C. Furtado, M.B. Lisboa, L.H. Almeida, Microstructural degradation of boiler tubes due to the presence of internal oxide layer, Journal of Materials Research and Technology 1 (2012) 109-116.
DOI: 10.1016/s2238-7854(12)70020-0
Google Scholar
[17]
S. Fujibayashi, Y. Ishikawa, Y. Arakawa, Hardness based creep life prediction for 2.25Cr1Mo superheater tubes in a boiler, ISIJ International 46 (2006) 325-334.
DOI: 10.2355/isijinternational.46.325
Google Scholar
[18]
H.S. Bao, S.C. Cheng, Z.D Liu, S.P. Tan, Aging precipitates and strengthening mechanism of T122 boiler steel, Journal of Iron and Steel Research - International 17 (2010) 67-73.
DOI: 10.1016/s1006-706x(10)60062-3
Google Scholar
[19]
S. Fujibayashi, Grain boundary damage evolution and rupture life of service-exposed 1.25Cr-0.5Mo steel welds, ISIJ International 43 (2003) 2054-2061.
DOI: 10.2355/isijinternational.43.2054
Google Scholar
[20]
J. Purbolaksono, J. Ahmad, A.Z. Rashid, A. Khinani, A.A. Ali, Failure analysis on a primary superheater tube of a power plant, Engineering Failure Analysis 17 (2010) 158-167.
DOI: 10.1016/j.engfailanal.2009.04.017
Google Scholar
[21]
M. M. Rahman, A. K. Kadir, Failure analysis of high temperature superheater tube (HTS) of a pulverized coal-fired power station, International Conference on Advanced Science, Engineering and Information Technology,, Malaysia, 2011, pp.517-522.
DOI: 10.18517/ijaseit.1.5.105
Google Scholar