Tensile and Compressive Creep Behavior of IN718 Alloy Manufactured by Selective Laser Melting

Article Preview

Abstract:

Tensile and compressive creep behavior of SLMed IN718 alloy under 973K (700°C) were investigated. Crept samples were analyzed by SEM and TEM to expose evolution of microstructure, precipitates and dislocation structure during the creep process. Results show that initial creep rate under compression is higher than under tension for the same creep conditions. Minimum creep rates are approximately the same both in tensile and compressive creep tests. The different creep behaviors may be related to the fact that tension stress promotes precipitations of fine needle-like γ′′ phases, while compression stress promotes precipitations of large size δ phases. The tension-compression asymmetry owns to the increment of chemical potential varying with the stress orientation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-108

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Ai, L. Liu, J. Zhang: J. Alloys Compd., 754 (2018): 85-92.

Google Scholar

[2] Y. Hu, L. Zhang, T. Cao: Mater. Sci. Eng. A, 728 (2018), pp.124-132.

Google Scholar

[3] D. Y. Zhang, P. D. Zhang, Z. Liu: Addit. Manuf., 21 (2018): 567-578.

Google Scholar

[4] M. Pröbstle, S. Neumeier, J. Hopfenmüller: Mater. Sci. Eng. A, 674 (2016): 299-307.

Google Scholar

[5] T. Trosch, J. Strößner, R. Völkl: Mater. Lett., 164 (2016): 428-431.

Google Scholar

[6] M. Ni, C. Chen, X. Wang: Mater. Sci. Eng. A, 701(2017): 344-351.

Google Scholar

[7] M. Sundararaman, P. Mukhopadhyay, S. Banerjee Metall. Trans. A, 19 (1988), pp.453-465.

Google Scholar

[8] R. Gujrati, C. Gupta, J. S. Jha: Mater. Sci. Eng. A, 744 (2019): 638-651.

Google Scholar

[9] K. Kulawik, P. A. Buffat, A. Kruk: Mater. Charact., 100 (2015): 74-80.

Google Scholar

[10] H. Zhang, C. Li, Y. Liu: J. Alloys Compd., 716 (2017): 65-72.

Google Scholar

[11] M. Dehmas, J. Lacaze, N. Niang: Adv. Mater. Sci. Eng., 2011 (2011), pp.1-9.

Google Scholar

[12] J. Svoboda, F. D. Fischer, H. Riedel: Int. J. Plast., 82 (2016): 112-126.

Google Scholar

[13] G. Eggeler, A. Dlouhy: Acta Mater., 45.10 (1997): 4251-4262.

Google Scholar

[14] C. M. Kuo, Y. T. Yang, H.Y. Bor: Mater. Sci. Eng. A, 510-511 (2009), pp.289-294.

Google Scholar

[15] A. H. Sully, G. N. Cale, G. Willoughby: Nature, 1948, 162(4115): 411.

Google Scholar

[16] G. F. Lepin, A. P. Tikhonov, V. F. Gorpinich: Stren. Mater., 1969, 1(3): 254-257.

Google Scholar

[17] M. Guttmann: Beijing: Science Publishing.,1989. 15.

Google Scholar

[18] Y. C. Chen: Chinese Journal of Rare Metals., 2 (2012). 171-177.

Google Scholar

[19] M. E. Kassner, M. T. Perez-Prado: Prog. Mater. Sci., 45.1 (2000): 1-102.

Google Scholar

[20] F. Liu, Z. Liu, P. Lin: Int. J. Plast., 92(2017): 2-18.

Google Scholar

[21] H. Yang, M. Huang, Z. Li: Comput. Mater. Sci., 99 (2015): 348-360.

Google Scholar

[22] Y. L. Kuo, S. Horikawa, K. Kakehi: Scr. Mater., 129 (2017), pp.74-78.

Google Scholar