Evaluating the Mechanical Behavior of ARB Processed Aluminum Composites Using Shear Punch Testing

Article Preview

Abstract:

Multi-layered metal composites have received considerable attention due to their improved mechanical and physical properties. In this study, Al6061/Al2024 composite was processed by accumulative roll bonding (ARB) as a severe plastic deformation technique. Mechanical properties of processed material were evaluated using the uniaxial tensile test and shear punch test method (SPT). The correlation between the results of the tension experiments and shear strengths was calculated. Experimental results demonstrated that the shear strength enhanced with increased number of ARB passes. However, the elongation under shear manifested a reduction when the number of ARB passes increased. Inspection of the results of tensile tests and SPT revealed that they follow a similar trend for both strength and ductility. Therefore, it can be asserted that the shear punch test represents a useful and complementary tool in the mechanical analysis of the ARB sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-92

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1998) 579–583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[2] L. Su, C. Lu, G. Deng, K. Tieu, Microstructure and Mechanical Properties of AA5005/AA6061 Laminated Composite Processed by Accumulative Roll Bonding, Metall. Mater. Trans. B. 45 (2013) 515–522.

DOI: 10.1007/s11663-013-9869-x

Google Scholar

[3] H. Alvandi, K. Farmanesh, Microstructural and Mechanical Properties of Nano/Ultra-fine Structured 7075 Aluminum Alloy by Accumulative Roll-Bonding Process, Procedia Mater. Sci. 11 (2015) 17–23.

DOI: 10.1016/j.mspro.2015.11.020

Google Scholar

[4] H. Yu, C. Lu, A.K. Tieu, A. Godbole, L. Su, Y. Sun, M. Liu, D. Tang, C. Kong, Fabrication of ultra-thin nanostructured bimetallic foils by Accumulative Roll Bonding and Asymmetric Rolling, Sci. Rep. 3 (2013) 1–9.

DOI: 10.1038/srep02373

Google Scholar

[5] R.S. V. G. Arigela , L. Lienshoeft1, P.Chekhonin, Comparative study of texture evolution in ARB processed AA2014, AA6063 and AA2014/6063 aluminium laminates, Kov. Mater. 53 2015 245–249.

DOI: 10.4149/km_2015_4_245

Google Scholar

[6] S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, K. Chattopadhyay, Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties, Mater. Des. 36 (2012) 529–539.

DOI: 10.1016/j.matdes.2011.11.015

Google Scholar

[7] L. Su, C. Lu, A.K. Tieu, G. Deng, X. Sun, Ultrafine grained AA1050/AA6061 composite produced by accumulative roll bonding, Mater. Sci. Eng. A. 559 (2013) 345–351.

DOI: 10.1016/j.msea.2012.08.109

Google Scholar

[8] S. Acharya, K.K. Ray, Assessment of tensile properties of spot welds using shear punch test, Mater. Sci. Eng. A. 565 (2013) 405–413.

DOI: 10.1016/j.msea.2012.12.068

Google Scholar

[9] R. a L. Drew, C. a Leo, Small punch testing for assessing the tensile strength of gradient Al / Ni – SiC composites, Mater. Lett. 56 (2002) 812–816.

DOI: 10.1016/s0167-577x(02)00619-5

Google Scholar

[10] M.L. Hamilton, F.A. Garner, M.B. Toloczko, S.A. Maloy, W.F. Sommer, M.R. James, P.D. Ferguson, M.R. Louthan, Shear punch and tensile measurements of mechanical property changes induced in various austenitic alloys by high-energy mixed proton and neutron irradiation at low temperatures, J. Nucl. Mater. 283–287 (2000) 418–422.

DOI: 10.1016/s0022-3115(00)00363-9

Google Scholar

[11] S.M. Kurtz, C.W. Jewett, J.S. Bergström, J.R. Foulds, A.A. Edidin, Miniature specimen shear punch test for UHMWPE used in total joint replacements, Biomaterials. 23 (2002) 1907–(1919).

DOI: 10.1016/s0142-9612(01)00316-7

Google Scholar

[12] P. Bahrami, A. Azizi, Investigation of Mechanical Properties for Commercial Purity Titanium Severely Plastic Deformed by Accumulative Roll-bonding Process, J. Mod. Process. Manuf. Prod. 6 (2017) 37–49.

Google Scholar

[13] A. Shabani, M.R. Toroghinejad, Study on Texture Evolution and Shear Behavior of an Al/Ni/Cu Composite, J. Mater. Eng. Perform. (2018).

DOI: 10.1007/s11665-018-3692-0

Google Scholar

[14] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[15] J. Dhyai Hassan, H. Ali, G.Y. Guney, On the mechanical behavior of accumulative roll bonded lightweight composite, Materials Research Express (2019).

Google Scholar

[16] Z.P. Xing, S.B. Kang, H.W. Kim, Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33 (2002) 1521–1530.

DOI: 10.1007/s11661-002-0074-9

Google Scholar

[17] C. Lu, K. Tieu, D. Wexler, Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles, J. Mater. Process. Technol. 209 (2009) 4830–4834.

DOI: 10.1016/j.jmatprotec.2009.01.003

Google Scholar

[18] V. Karthik, P. Visweswaran, A. Vijayraghavan, K. V. Kasiviswanathan, B. Raj, Tensile-shear correlations obtained from shear punch test technique using a modified experimental approach, J. Nucl. Mater. 393 (2009) 425–432.

DOI: 10.1016/j.jnucmat.2009.06.027

Google Scholar

[19] G.L. Hankin, M.B. Toloczko, M.L. Hamilton, R.G. Faulkner, Validation of the shear punch-tensile correlation technique using irradiated materials, J. Nucl. Mater. 258–263 (1998) 1651–1656.

DOI: 10.1016/s0022-3115(98)00203-7

Google Scholar

[20] M.B. Toloczko, R.J. Kurtz, A. Hasegawa, K. Abe, Shear punch tests performed using a new low compliance test fixture, J. Nucl. Mater. 307–311 (2002) 1619–1623.

DOI: 10.1016/s0022-3115(02)01258-8

Google Scholar