Use of Longitudinal Roughness Measurements as Tool End-of-Life Indicator in AISI 1045 Dry Longitudinal Turning

Article Preview

Abstract:

The important portion of machining costs associated with cutting inserts and scraps induces the search for better effectiveness in turning. This paper presents the results of an exploratory study on the influence of tool flank wear on roughness indicators (arithmetic average roughness, root mean square roughness and maximum height of the roughness profile). The objective is to determine which of these indicators is best correlated with the cutting tool flank wear. In order to do this, specimens of AISI 1045 are machined until the end of life of a cutting insert. Significant, strong and positive correlations are found between all three roughness indicators and the tool flank wear. The most significant correlation is found with the arithmetic average roughness and the root mean square roughness of the profile. The choice of the end-of-life criteria for cutting inserts in industrial contexts is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-101

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yao, X. D. Fang, et G. Arndt, «On-Line Estimation of Groove Wear in the Minor Cutting Edge for Finish Machining», CIRP Ann., vol. 40, no 1, p.41‑44, (1991).

DOI: 10.1016/s0007-8506(07)61929-5

Google Scholar

[2] Z. Vagnorius et K. Sorby, «Estimation of cutting tool failure costs », in 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2009, p.262‑266.

DOI: 10.1109/ieem.2009.5373366

Google Scholar

[3] «ISO 3685:1993 - Tool-life testing with single-point turning tools.» (1993).

Google Scholar

[4] G. T. Smith, Cutting Tool Technology. London: Springer London, (2008).

Google Scholar

[5] Y. Altintas, Manufacturing automation. Cambridge University Press, (2012).

Google Scholar

[6] W. Rmili, A. Ouahabi, R. Serra, et R. Leroy, «An automatic system based on vibratory analysis for cutting tool wear monitoring», Measurement, vol. 77, p.117‑123, janv. (2016).

DOI: 10.1016/j.measurement.2015.09.010

Google Scholar

[7] A. E. Diniz, J. J. Liu, et D. A. Dornfeld, «Correlating tool life, tool wear and surface roughness by monitoring acoustic emission in finish turning», Wear, vol. 152, no 2, p.395‑407, (1992).

DOI: 10.1016/0043-1648(92)90135-u

Google Scholar

[8] G. P. Petropoulos, C. N. Pandazaras, et J. P. Davim, «Surface Texture Characterization and Evaluation Related to Machining», in Surface Integrity in Machining, J. P. Davim, Éd. London: Springer London, 2010, p.37‑66.

DOI: 10.1007/978-1-84882-874-2_2

Google Scholar

[9] D. A. Stephenson et J. S. Agapiou, Metal Cutting Theory and Practice, 3e éd. Boca Raton: CRC Press, Taylor & Francis, (2016).

Google Scholar

[10] P. G. Benardos et G.-C. Vosniakos, « Predicting surface roughness in machining: a review », Int. J. Mach. Tools Manuf., vol. 43, no 8, p.833‑844, (2003).

DOI: 10.1016/s0890-6955(03)00059-2

Google Scholar

[11] W. Grzesik, « Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools », Wear, vol. 265, no 3‑4, p.327‑335, (2008).

DOI: 10.1016/j.wear.2007.11.001

Google Scholar

[12] C. Lu, N. Ma, Z. Chen, et J.-P. Costes, « Pre-evaluation on surface profile in turning process based on cutting parameters », Int. J. Adv. Manuf. Technol., vol. 49, no 5‑8, p.447‑458, (2010).

DOI: 10.1007/s00170-009-2417-9

Google Scholar

[13] T. Özel et Y. Karpat, « Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks », Int. J. Mach. Tools Manuf., vol. 45, no 4‑5, p.467‑479, (2005).

DOI: 10.1016/j.ijmachtools.2004.09.007

Google Scholar

[14] L. Equeter, C. Letot, R. Serra, et P. Dehombreux, « Estimate of Cutting Tool Lifespan through Cox Proportional Hazards Model », IFAC-PapersOnLine, vol. 49, no 28, p.238‑243, (2016).

DOI: 10.1016/j.ifacol.2016.11.041

Google Scholar

[15] L. Wang, M. G. Mehrabi, et E. Kannatey-Asibu, « Hidden Markov Model-based Tool Wear Monitoring in Turning», J. Manuf. Sci. Eng., vol. 124, no 3, p.651, (2002).

DOI: 10.1115/1.1475320

Google Scholar

[16] V. P. Astakhov, « The assessment of cutting tool wear », Int. J. Mach. Tools Manuf., vol. 44, no 6, p.637‑647, (2004).

Google Scholar

[17] A. Siddhpura et R. Paurobally, «A review of flank wear prediction methods for tool condition monitoring in a turning process», Int. J. Adv. Manuf. Technol., vol. 65, no 1‑4, p.371‑393, (2013).

DOI: 10.1007/s00170-012-4177-1

Google Scholar

[18] P. J. Arrazola, A. Garay, E. Fernandez, et K. Ostolaza, «Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions », Int. J. Mach. Mach. Mater., vol. 15, no 1/2, p.84, (2014).

DOI: 10.1504/ijmmm.2014.059193

Google Scholar

[19] R. M. Sundaram et B. K. Lambert, « Surface roughness variability of AISI 4140 steel in fine turning using carbide tools », Int. J. Prod. Res., vol. 17, no 3, p.249‑258, (1979).

DOI: 10.1080/00207547908919612

Google Scholar

[20] V. P. Astakhov et J. P. Davim, « Tools (Geometry and Material) and Tool Wear », in Machining - Fundamentals and Recent Advances, Springer-V., J. P. Davim, Éd. London: Springer London, 2008, p.29‑57.

DOI: 10.1007/978-1-84800-213-5_2

Google Scholar

[21] Seco Tools, Turning catalog and technical guide, 2e éd. SECO TOOLS AB, (2018).

Google Scholar

[22] F. Klocke, Manufacturing Processes 1. Berlin, Heidelberg: Springer Berlin Heidelberg, (2011).

Google Scholar

[23] M. E. R. Bonifacio et A. E. Diniz, «Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools», Wear, vol. 173, no 1‑2, p.137‑144, (1994).

DOI: 10.1016/0043-1648(94)90266-6

Google Scholar