Utilizing Alginate to Improve Elasticity and Moisture Balance of Polyvinyl Alcohol/Chitosan Hydrogel Wound Dressing

Article Preview

Abstract:

Uncontrolled hemorrhage is the leading cause of death. The efficient hemostatic dressings are needed to promote coagulation and hold ongoing hemorrhage. Hydrogels are hydrophilic polymers with three-dimensional network structures with high swelling capacity to prevent accumulation of exudates. Hydrogels prepared from polyvinyl alcohol (PVA) grafted with chitosan have attracted considerable attentions due to their biocompatibility, high moisture balance property, and transparency. In this study, alginate was utilized to improve elasticity and thermal stability, also enhance hydrophilicity and increase swelling ability. The hydrogels composed of PVA (7.5 % w/v), chitosan (0.05 % w/v), and alginate (0.2, 0.4, and 0.6 % w/v) were synthesized by gamma irradiation technique at total dose of 15 kGy. The results showed that the increasing of alginate concentration in the total reactant mixture can improve elasticity, swelling capacity and the equilibrium degree of swelling (EDS), and decrease water vapour transmitted rate/moisture vapour transmitted rate (MVTR). The hydrogel wound dressing with 0.6 % of alginate concentration was the best product in this study with 79.49 % gel content, 608.65 % swelling ratio, 628.32 % EDS in 22 hours, elasticity 62.58 KPa, evaporation rate (MVTR) 105g/m2 h, degraded at temperature of 298.89oC, and the weight loss was reached 88.84 % (w/w).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-161

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.A. Kamoun, E-R.S. Kenawy and X. Chen, Journal of Advanced Research 8 (3) (2017) 217-233.

Google Scholar

[2] K. Vowden and P. Vowden, Surgery (Oxford) 35 (9) (2017) 489-494.

DOI: 10.1016/j.mpsur.2017.06.005

Google Scholar

[3] H.N. Li, J. Yang, X.N. Hu, J. Liang, Y.J. Fan and X.D. Zhang, J. Biomed. Mater. Res. A 98 (2011) 31-39.

Google Scholar

[4] J. Koehler, F.P. Brandl and A.M. Goepferich, European Polymer Journal 100 (2017) 1-11.

Google Scholar

[5] T. Wang, X-K. Zhu, X-T. Xue and D.Y. Wu, Carbohydrate Polymers 88 (2012) 75-83.

Google Scholar

[6] D. Mukherjee, Md. Azamthulla, S. Santhosh, G. Dath, A. Ghosh, R. Natholia, J. Anbu, B.V. Teja and K.M. Muzammil, Journal of Drug Delivery Science and Technology 46 (2018) 498-510.

DOI: 10.1016/j.jddst.2018.06.008

Google Scholar

[7] S. Anjum, A. Arora, M.S. Alam and B. Gupta, International Journal of Pharmaceutics 508 (1-2) (2016) 92-101.

Google Scholar

[8] S. Sharma, R. Kumar, P. Kumari, R.N. Kharwar, A.K. Yadav and S. Saripella, International Journal of Biological Macromolecules 125 (2019) 109-115.

DOI: 10.1016/j.ijbiomac.2018.12.018

Google Scholar

[9] E.M. de A. Braz, S.C.C.C. e Silva, D.A. da Silva, F.A. de A. Carvalho, H.M. Barreto, L. de S.S. Júnior and E.C. da S. Filho, International Journal of Biological Macromolecules 117 (2018) 640-647.

DOI: 10.1016/j.ijbiomac.2018.05.205

Google Scholar

[10] Y. Chen, Y. Zhang, F. Wang, W. Meng, X. Yang, P. Li, J. Jiang, H. Tan and Y. Zheng, Material Science and Engineering C 63 (2016)18-29.

Google Scholar

[11] G. Michailidou, E. Christodoulou, S. Nanaki, P. Barmpalexis, E. Karavas, S. Vergkizi-Nikolakaki and D.N. Bikiaris, Carbohydrate Polymers (2019) 208 1-13.

DOI: 10.1016/j.carbpol.2018.12.050

Google Scholar

[12] Y. Xie, Z-X. Yi, J-X. Wang, T-G. Hou and Q. Jiang International Journal of Biological Macromolecules 112 (2018) 1225-33.

Google Scholar

[13] S. Jiang, S. Liu and W. Feng, Journal of the Mechanical Behavior of Biomedical Materials 4 (7) (2011)1228-1233.

Google Scholar

[14] I. Bano, M. Arshad, T. Yasin and M.A. Ghauri, International Journal of Biological Macromolecules 124 (2019)155-62.

Google Scholar

[15] A. Ali, Md.A. Shahid, Md.D. Hossain and Md.N. Islam, International Journal of Biological Macromolecules In Press Accepted Manuscript DOI 10.1016/j.ijbiomac.2019.07.015 (2019).

Google Scholar

[16] K.Y. Lee and D.J. Mooney, Progress in Polymer Science 37 (1) (2012) 106-126.

Google Scholar

[17] Y. Tang, X. Lan, C. Liang, Z. Zhong, R. Xie, Y. Zhou, X. Miao, H. Wang and W. Wang, Carbohydrate Polymers 219 (2019) 113-120.

DOI: 10.1016/j.carbpol.2019.05.004

Google Scholar

[18] H. Mndlovu, L.C. du Toit, P. Kumar, T. Marimuthu, P.P.D. Kondiah, Y.E. Choonara and V. Pillay, Carbohydrate Polymers 222 (2019) 114988.

DOI: 10.1016/j.carbpol.2019.114988

Google Scholar

[19] H. Kaygusuz, E. Torlak, G. Akın-Evingür, İ. Özen, R. von Klitzing and F.B. Erim, International Journal of Biological Macromolecules 105 (1) (2017) 1161-1165.

DOI: 10.1016/j.ijbiomac.2017.07.144

Google Scholar

[20] C.A. Stone, H. Wright, T. Clarke, R. Powell and V.S. Devaraj, Br. J. Plast. Surg. 53 (2000)601-6.

Google Scholar

[21] M.T. Longaker, E.S. Chiu, N.S. Adzick, M. Stern, M.R. Harrison and R. Stern, Ann. Surg. 213 (1991) 292–6.

Google Scholar

[22] J.M. Rosiak, I. Janik, S. Kadlubowski, M. Kozicki, P. Kujawa, P. Stasica and P. Ulanski, Nuclear Instruments and Methods in Physics, Research Section B: Beam Interactions with Materials and Atoms 208 (2003) 325-330.

DOI: 10.1016/s0168-583x(03)00627-x

Google Scholar

[23] E.A. Kamoun, El-R.S. Kenawy, T.M. Tamer, M.A. El-Meligy and M.S.M. Eldin, Arabian Journal of Chemistry 8 (1) (2015) 38-47.

DOI: 10.1016/j.arabjc.2013.12.003

Google Scholar

[24] D.R. Barleany, I.P. Alim, N. Rizkiyah, U.T. Lusi, H. Heriyanto and Erizal, International Conference on Technology, Innovation, and Society (ICTIS) 2016 Proceeding (Padang July 21-22 Indonesia) 978-602-70570-4-3 DOI 10.21063/ICTIS.2016.1099 (2016).

DOI: 10.21063/ictis.2016.1099

Google Scholar

[25] E.D.T. Atkins, W. Mackie and E.E. Smolko, Nature 225 (1970) 626-628.

Google Scholar