Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-6Mo-6Nb-xSn Alloys for Biomedical Application

Article Preview

Abstract:

Ti-6Al-4V alloy have been used widely for biomedical application, but its elastic modulus is still higher compared with human bone. Moreover, it contains V and Al that have been reported as toxic element. In this study new beta type Ti-6Mo-6Nb-xSn (0, 4, 8 wt.%) have been developed. The aim of this study was to evaluate the Sn addition on microstructural transformation, mechanical behaviour, and corrosion resistance of Ti-6Mo-6Nb-xSn alloys. The Ti-6Mo-6Nb-xSn alloys produced by arc re-melting process and the obtain ingot were characterized using optical microscope, x-ray diffractometer, ultrasonic evaluation, Vicker’s hardness tester, and polarization test to evaluate the corrosion resistance. The result showed that Ti-6Mo-6Nb-8Sn has the lowest elastic modulus and Vicker’s hardness value. The Sn addition could suppress α phase formation. Ti-6Mo-6Nb-8Sn has lower corrosion rate compared to commercial Ti6Al4V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

175-181

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. J. Rack, J. I. Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering C, 26 (2006) 1269–1277.

DOI: 10.1016/j.msec.2005.08.032

Google Scholar

[2] M. G. De Mello, C. F. Salvador, A. Cremasco, R. Caram, The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti – Mo alloys employed as biomaterials, Materials Characterization, 110 (2015) 5–13.

DOI: 10.1016/j.matchar.2015.10.005

Google Scholar

[3] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia, 8 (2011) 3888–3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[4] M. A. Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials, 20 (2013) 407–415.

DOI: 10.1016/j.jmbbm.2012.11.014

Google Scholar

[5] M. Semlitsch, F. Staub, H. Weber, "Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants, Biomedizinische Technik, 30 (1985) 334–339.

DOI: 10.1515/bmte.1985.30.12.334

Google Scholar

[6] G. Senopati, C. Sutowo, M. I. Amal, Mechanical properties, microstructure, and biocompatibility of Ti-6Al-6Nb, IOP Conf. Series: Journal of Physics: Conf. Series 817(2017) 1–5.

DOI: 10.1088/1742-6596/817/1/012012

Google Scholar

[7] M. Abdel-hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters, Scripta Materialia, 55 (2006) 477-480.

DOI: 10.1016/j.scriptamat.2006.04.022

Google Scholar

[8] Cheng-Lin Li, X.-J. Mi, W.-J. Ye, S.-X. Hui, Y. Yu, Effect of solution temperature on microstructures and tensile properties of high strength Ti – 6Cr – 5Mo – 5V – 4Al alloy, Materials Science & Engineering A, 578 (2013) 103–109.

DOI: 10.1016/j.msea.2013.04.063

Google Scholar

[9] S. B. Gabriel, J. V. P. Panaino, I. D. Santos, L. S. Araujo, P. R. Mei, L. H. De Almeida, C. A. Nunes, Characterization of a new beta titanium alloy, Ti-12Mo-3Nb, for biomedical applications, Journal of Alloys and Compounds, 536 (2012) S208–S210.

DOI: 10.1016/j.jallcom.2011.11.035

Google Scholar

[10] G. Senopati, C. Sutowo, I. Kartika, B. Suharno, The Effect of Solution Treatment on Microstructure and Mechanical Properties of Ti-6Mo-6Nb-8Sn Alloy, Materials Today: Proceedings, 13 (2019) 224–228.

DOI: 10.1016/j.matpr.2019.03.218

Google Scholar

[11] K. Rajamallu, M. K. Niranjan, K. Ameyama, S. R. Dey, Phase stability and elastic properties of β Ti – Nb – X ( X = Zr , Sn ) alloys : an ab initio density functional, Modelling and Simulation in Materials Science and Engineering, 25 (2017) 1–19.

DOI: 10.1088/1361-651x/aa93c1

Google Scholar

[12] B. Jiang, Q. Wang, D. Wen, F. Xu, G. Chen, C. Dong, L. Sun, P. K. Liaw, Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus, Materials Science & Engineering A, 687 (2017) 1–7.

DOI: 10.1016/j.msea.2017.01.047

Google Scholar

[13] M. Sabeena, A. George, S. Murugesan, R. Divakar, E. Mohandas, M. Vijayalakshmi, "Microstructural characterization of transformation products of bcc b in Ti-15 Mo alloy, ournal of Alloys and Compounds, 658 (2016) 301–315.

DOI: 10.1016/j.jallcom.2015.10.200

Google Scholar

[14] B. L. Wang, Y. F. Zheng, L. C. Zhao, Effects of Sn content on the microstructure , phase constitution and shape memory effect of Ti – Nb – Sn alloys," Mater. Sci. Eng. A, vol. 486, p.146–151, (2008).

DOI: 10.1016/j.msea.2007.08.073

Google Scholar

[15] Zhang Q, Chen J, Tan H, Lin X, Huang WD, Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed b grains fabricated by laser additive manufacture, Journal of Alloys and Compounds, 666 (2016) 380–386.

DOI: 10.1016/j.jallcom.2016.01.065

Google Scholar

[16] Anoop Kumar, Balasunder, T Raghu SR, Influences of Temperature of Thermo Mechanical Working on Hardness of Titanium Alloy, Advanced Materials Research, 585 (2012) 381–386.

DOI: 10.4028/www.scientific.net/amr.585.381

Google Scholar

[17] Y. L. Hao, S. J. Li, S. Y. Sun, R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti – Nb-based alloys, Materials Science & Engineering A, 441 (2006) 112–118.

DOI: 10.1016/j.msea.2006.09.051

Google Scholar

[18] P. E. L. Moraes, R. J. Contieri, E. S. N. Lopes, A. Robin, Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys Paulo, Materials Characterization, 96 (2014) 273–28.

DOI: 10.1016/j.matchar.2014.08.014

Google Scholar

[19] P. Majumdar, S. B. Singh, M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques — A comparative study, Materials Science & Engineering A, 489 (2008) 419–425.

DOI: 10.1016/j.msea.2007.12.029

Google Scholar

[20] L. C. Tsao, Effect of Sn addition on the corrosion behavior of Ti – 7Cu – Sn cast alloys for biomedical applications, Materials Science & Engineering C, 46(2015) 246–252.

DOI: 10.1016/j.msec.2014.10.037

Google Scholar