[1]
H. J. Rack, J. I. Qazi, Titanium alloys for biomedical applications, Materials Science and Engineering C, 26 (2006) 1269–1277.
DOI: 10.1016/j.msec.2005.08.032
Google Scholar
[2]
M. G. De Mello, C. F. Salvador, A. Cremasco, R. Caram, The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti – Mo alloys employed as biomaterials, Materials Characterization, 110 (2015) 5–13.
DOI: 10.1016/j.matchar.2015.10.005
Google Scholar
[3]
M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomaterialia, 8 (2011) 3888–3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[4]
M. A. Gepreel, M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials, 20 (2013) 407–415.
DOI: 10.1016/j.jmbbm.2012.11.014
Google Scholar
[5]
M. Semlitsch, F. Staub, H. Weber, "Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants, Biomedizinische Technik, 30 (1985) 334–339.
DOI: 10.1515/bmte.1985.30.12.334
Google Scholar
[6]
G. Senopati, C. Sutowo, M. I. Amal, Mechanical properties, microstructure, and biocompatibility of Ti-6Al-6Nb, IOP Conf. Series: Journal of Physics: Conf. Series 817(2017) 1–5.
DOI: 10.1088/1742-6596/817/1/012012
Google Scholar
[7]
M. Abdel-hady, K. Hinoshita, M. Morinaga, General approach to phase stability and elastic properties of b-type Ti-alloys using electronic parameters, Scripta Materialia, 55 (2006) 477-480.
DOI: 10.1016/j.scriptamat.2006.04.022
Google Scholar
[8]
Cheng-Lin Li, X.-J. Mi, W.-J. Ye, S.-X. Hui, Y. Yu, Effect of solution temperature on microstructures and tensile properties of high strength Ti – 6Cr – 5Mo – 5V – 4Al alloy, Materials Science & Engineering A, 578 (2013) 103–109.
DOI: 10.1016/j.msea.2013.04.063
Google Scholar
[9]
S. B. Gabriel, J. V. P. Panaino, I. D. Santos, L. S. Araujo, P. R. Mei, L. H. De Almeida, C. A. Nunes, Characterization of a new beta titanium alloy, Ti-12Mo-3Nb, for biomedical applications, Journal of Alloys and Compounds, 536 (2012) S208–S210.
DOI: 10.1016/j.jallcom.2011.11.035
Google Scholar
[10]
G. Senopati, C. Sutowo, I. Kartika, B. Suharno, The Effect of Solution Treatment on Microstructure and Mechanical Properties of Ti-6Mo-6Nb-8Sn Alloy, Materials Today: Proceedings, 13 (2019) 224–228.
DOI: 10.1016/j.matpr.2019.03.218
Google Scholar
[11]
K. Rajamallu, M. K. Niranjan, K. Ameyama, S. R. Dey, Phase stability and elastic properties of β Ti – Nb – X ( X = Zr , Sn ) alloys : an ab initio density functional, Modelling and Simulation in Materials Science and Engineering, 25 (2017) 1–19.
DOI: 10.1088/1361-651x/aa93c1
Google Scholar
[12]
B. Jiang, Q. Wang, D. Wen, F. Xu, G. Chen, C. Dong, L. Sun, P. K. Liaw, Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus, Materials Science & Engineering A, 687 (2017) 1–7.
DOI: 10.1016/j.msea.2017.01.047
Google Scholar
[13]
M. Sabeena, A. George, S. Murugesan, R. Divakar, E. Mohandas, M. Vijayalakshmi, "Microstructural characterization of transformation products of bcc b in Ti-15 Mo alloy, ournal of Alloys and Compounds, 658 (2016) 301–315.
DOI: 10.1016/j.jallcom.2015.10.200
Google Scholar
[14]
B. L. Wang, Y. F. Zheng, L. C. Zhao, Effects of Sn content on the microstructure , phase constitution and shape memory effect of Ti – Nb – Sn alloys," Mater. Sci. Eng. A, vol. 486, p.146–151, (2008).
DOI: 10.1016/j.msea.2007.08.073
Google Scholar
[15]
Zhang Q, Chen J, Tan H, Lin X, Huang WD, Influence of solution treatment on microstructure evolution of TC21 titanium alloy with near equiaxed b grains fabricated by laser additive manufacture, Journal of Alloys and Compounds, 666 (2016) 380–386.
DOI: 10.1016/j.jallcom.2016.01.065
Google Scholar
[16]
Anoop Kumar, Balasunder, T Raghu SR, Influences of Temperature of Thermo Mechanical Working on Hardness of Titanium Alloy, Advanced Materials Research, 585 (2012) 381–386.
DOI: 10.4028/www.scientific.net/amr.585.381
Google Scholar
[17]
Y. L. Hao, S. J. Li, S. Y. Sun, R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti – Nb-based alloys, Materials Science & Engineering A, 441 (2006) 112–118.
DOI: 10.1016/j.msea.2006.09.051
Google Scholar
[18]
P. E. L. Moraes, R. J. Contieri, E. S. N. Lopes, A. Robin, Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys Paulo, Materials Characterization, 96 (2014) 273–28.
DOI: 10.1016/j.matchar.2014.08.014
Google Scholar
[19]
P. Majumdar, S. B. Singh, M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques — A comparative study, Materials Science & Engineering A, 489 (2008) 419–425.
DOI: 10.1016/j.msea.2007.12.029
Google Scholar
[20]
L. C. Tsao, Effect of Sn addition on the corrosion behavior of Ti – 7Cu – Sn cast alloys for biomedical applications, Materials Science & Engineering C, 46(2015) 246–252.
DOI: 10.1016/j.msec.2014.10.037
Google Scholar