[1]
Elias, C.N., Lima, J.H.C., Valiev, R., and Meyers M A, Biomedical applications of titanium and its alloys, Biological Materials Science J. Biol. Mater. Sci. 60 (2008) 46–49.
DOI: 10.1007/s11837-008-0031-1
Google Scholar
[2]
Nestler K, Böttger-Hiller F, Adamitzki W, Glowa G, Zeidler H and Schubert, A Plasma Electrolytic Polishing - An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range, Procedia CIRP 42 (2016) 503–507.
DOI: 10.1016/j.procir.2016.02.240
Google Scholar
[3]
Kreshanti P, Tunjung N, Dionisius A, Supriadi S and Whulanza Y The usability of locally-made miniplate and screw compared to the existing imported miniplate and screw, AIP Conf. Proc. 2092 (2019) 1-8.
DOI: 10.1063/1.5096700
Google Scholar
[4]
Anagnostakos K, Schmid N V, Kelm J, Grün U and Jung J, Classification of hip joint infections. Int. J. Med. Sci. 6 (2009) 227–233.
DOI: 10.7150/ijms.6.227
Google Scholar
[5]
Qosim N, Supriadi S, Saragih A S and Whulanza Y, Surface treatments of ti-alloy based bone implant manufactured by electrical discharge machining, Ing. y Univ. 22 (2018) 1-12.
DOI: 10.11144/javeriana.iyu22-2.sttb
Google Scholar
[6]
Qosim N, Supriadi S, Istiyanto J, Saragih A S and Whulanza Y, Surface characteristics of Ti6Al4V-EDM implant engineered by PVD coated-etching and Acidithiobacillus ferrooxidans based-biomachining AIP Conf. Proc. 2008 (2018) 5–10.
DOI: 10.1063/1.5051974
Google Scholar
[7]
Zahran R, Rosales Leal J I, Rodríguez Valverde M A and Cabrerizo Vílchez M A, Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion PLoS One 11 (2016) 1–12.
DOI: 10.1371/journal.pone.0165296
Google Scholar
[8]
Qosim N, Supriadi S, Puspitasari P and Kreshanti P, Mechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining Int. J. Eng. 31(2018)1103-1108.
DOI: 10.5829/ije.2018.31.07a.14
Google Scholar
[9]
Yoon W-J, Kim S-G, Oh J-S, You J-S, Jeong K-I, Lim S-C and Jeong M-A, Comparative study on the osseointegration of implants in dog mandibles according to the implant surface treatment J. Korean Assoc. Oral Maxillofac. Surg. 42 (2017) 345.
DOI: 10.5125/jkaoms.2016.42.6.345
Google Scholar
[10]
Asri R I M, Harun W S W, Hassan M A, Ghani S A C and Buyong Z, A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals J. Mech. Behav. Biomed. Mater. 57 (2016) 95–108.
DOI: 10.1016/j.jmbbm.2015.11.031
Google Scholar
[11]
Fathi M H, Hanifi A and Mortazavi V, Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder J. Mater. Process. Technol. 202 (2008) 536–42.
DOI: 10.1016/j.jmatprotec.2007.10.004
Google Scholar
[12]
Oldani C and Dominguez A, Titanium as a Biomaterial for Implants Recent Adv. Arthroplast. 1 (2012 ) 149–62.
Google Scholar
[13]
Lei Z, Zhang H, Zhang E, You J, Ma X and Bai X, Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching Mater. Sci. Eng. C 92 (2018) 121–131.
DOI: 10.1016/j.msec.2018.06.024
Google Scholar
[14]
Korotin D M, Bartkowski S, Kurmaev E Z, Meumann M, Yakushina E B, Valiev R Z and Cholakh S O, Surface Characterization of Titanium Implants Treated in Hydrofluoric Acid J. Biomater. Nanobiotechnol. 03 (2012) 87–91.
DOI: 10.4236/jbnb.2012.31011
Google Scholar
[15]
Drevet R, Ben Jaber N, Fauré J, Tara A, Ben Cheikh Larbi A and Benhayoune H, Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates Surf. Coatings Technol. 301 (2016) 94–99.
DOI: 10.1016/j.surfcoat.2015.12.058
Google Scholar
[16]
B, Yao Y, Chan X, Zhang W, Zhang Z, Yang and Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82 (2003) 785–788.
Google Scholar
[17]
Hung K Y, Lin Y C and Feng H P, The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials Materials (Basel). 10 (2017) 1-4.
DOI: 10.3390/ma10101164
Google Scholar