Study of the Influence of Voltage Variation on the Surface Texturing of Ti-6Al-4V Using Electrolytic Plasma Technique for Orthopaedic Implant Applications

Article Preview

Abstract:

Osseointegration is a process consisting of the formation of bone tissue on the implant surface, so that the osseointegration process occurs, a surface with surface roughness (Ra) is required in isotropic microtopography with a size of 1-100 nm. The plasma treatment can be done to reach the Ra parameter. This study aims to discuss the treatment of Plasma Electrolytic Process (PEP) with the principle of physiochemical erosion using electrolytic cells on Ti-6Al-4V alloy implants, to form a plasma layer in the form of spark discharge and Vapour Gas Envelope (VGE). Samples made of Ti-6Al-4V are tested with several parameters including different electrolytes and different applied voltages are investigated, and the results of the formation of VGE which influences the surface characterization are evaluated. The results show that the process of PEP with electrolyte consist of 50% H3PO4 + 10% NaClO4 + 1% HF and 10% ethylene glycol + 2% NH4F at a voltage of 90-130 V produces VGE and non-homogeneous spark discharge resulting in a surface with microporous structures with increasing surface roughness and micro-hardness indicating the formation of an oxide layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-199

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Krishna Alla, K. Ginjupalli, N. Upadhya, M. Shammas, R. Krishna Ravi, and R. Sekhar, Surface roughness of implants: A review, Trends Biomater. Artif. Organs. 25 (2011) 112–118.

Google Scholar

[2] D. D. Bosshardt, V. Chappuis, and D. Buser, Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions, Periodontol. 73 (2017) 22–40.

DOI: 10.1111/prd.12179

Google Scholar

[3] D. Apostu, O. Lucaciu, C. Berce, D. Lucaciu, and D. Cosma, Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: a review, J. Int. Med. Res. 46 (2018) 2104–2119.

DOI: 10.1177/0300060517732697

Google Scholar

[4] J. N. Katz, J. Wright, E. A. Wright, and E. Losina, Failures of Total Hip Replacement: A Population-Based Perspective, Orthop J Harvard Med. Sch. 9 (2007) 101–106.

Google Scholar

[5] D. Khang, J. Lu, C. Yao, K. M. Haberstroh, and T. J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium, Biomaterials, 29 (2008) 970–983.

DOI: 10.1016/j.biomaterials.2007.11.009

Google Scholar

[6] P. Kreshanti, N. Tunjung, and A. Dionisius, The usability of locally-made miniplate and screw compared to the existing imported miniplate and screw The Usability of Locally-Made Miniplate and Screw Compared to The Existing Imported Miniplate and Screw, AIP Conference Proceedings 2092, 020032 (2019) 1-8.

DOI: 10.1063/1.5096700

Google Scholar

[7] N. Qosim, S. Supriadi, P. Puspitasari, and P. Kreshanti, Mechanical Surface Treatments of Ti-6Al-4V Miniplate Implant Manufactured by Electrical Discharge Machining, 31 (2018) 1103–1108.

DOI: 10.5829/ije.2018.31.07a.14

Google Scholar

[8] N. Qosim, S. Supriyadi, A. S. Saragih, Y. Whulanza, Surface treatments of ti-alloy based bone implant manufactured by electrical, Ingeniería Y Universidad: Engineering For Development, 2769 (2018) 1-12.

DOI: 10.11144/javeriana.iyu22-2.sttb

Google Scholar

[9] H. Zeidler, F. Boettger-Hiller, J. Edelmann, and A. Schubert, Surface Finish Machining of Medical Parts Using Plasma Electrolytic Polishing, Procedia CIRP, 49 (2016) 83–87.

DOI: 10.1016/j.procir.2015.07.038

Google Scholar

[10] A. Hana, Pembentukan Nanotube dan Penyalutan Komposit Hidroksiapatit-Polivinil-Alkohol-Kolagen pada Paduan Logam Ti-6Al-4V, Bogor, (2018).

Google Scholar

[11] E. V. Parfenov, A. Yerokhin, R. R. Nevyantseva, M. V. Gorbatkov, C. J. Liang, and A. Matthews, Towards smart electrolytic plasma technologies: An overview of methodological approaches to process modelling," Surf. Coatings Technol., 269 (2015) 2–22.

DOI: 10.1016/j.surfcoat.2015.02.019

Google Scholar

[12] K. Nestler, F. Böttger-Hiller, W. Adamitzki, G. Glowa, H. Zeidler, and A. Schubert, Plasma Electrolytic Polishing - An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range, Procedia CIRP, 42 (2016) 503–507.

DOI: 10.1016/j.procir.2016.02.240

Google Scholar

[13] M. Cornelsen, C. Deutsch, and H. Seitz, Electrolytic Plasma Polishing of Pipe Inner Surfaces, Metals (Basel), 8 (2017) 12.

DOI: 10.3390/met8010012

Google Scholar

[14] N. Qosim, S. Supriadi, J. Istiyanto, A. S. Saragih, and Y. Whulanza, Surface Characteristics of Ti6Al4V-EDM Implant Engineered by PVD Coated-Etching and Acidithiobacillus Ferrooxidans Based-Biomachining, 020005 (2018) 5–10.

DOI: 10.1063/1.5051974

Google Scholar

[15] S. K. Sen Gupta, Contact Glow Discharge Electrolysis: Its Origin, Plasma Diagnostics and Non-Faradaic Chemical Effects, Plasma Sources Sci. Technol. 24 (2015) 063001.

DOI: 10.1088/0963-0252/24/6/063001

Google Scholar

[16] M. B. Štefan Podhorsky, Plasma Polishing of Stainless Steel – The Electrolyte Concentration vs Gloss Level, Res. Pap. Fac. Mater. Sci. Technol. 26 (2018) 171–176.

Google Scholar

[17] A. V Zhirov, S. Y. Shadrin, and P. N. Belkin, Effects of Electrolyte Composition on Heat Exchange in Anode Plasma Electrolyte Treatment of Commercial Titanium 1, 54 (2018) 136–141.

DOI: 10.3103/s1068375518020151

Google Scholar

[18] D. Zhai, K. Feng, and H. Yue, Growth Kinetics of Microarc Oxidation TiO 2 Ceramic Film on Ti6Al4V Alloy in Tetraborate Electrolyte, Metall. Mater. Trans. A, 50 (2019) 2507–2518.

DOI: 10.1007/s11661-019-05185-1

Google Scholar

[19] C. Nair, Effect of Different Polishing Agents on Surface Finish and Hardness of Denture Base Acrylic Resins: A Comparative Study, Int. Journal of Prosthodontics and Restorative Dentistry, 1 (2011) 7-10.

DOI: 10.5005/jp-journals-10019-1002

Google Scholar