Structural-Phase Analysis of the Titanium Niobium System Formed by Electro-Explosive Method on the Titanium Implant Surface

Article Preview

Abstract:

TiNb coatings were obtained by the electro-explosive doping on the surface of a titanium dental implant (VT6 alloy). The elemental and phase composition was determined by the methods of scanning and transmission electron microscopy and by X-ray structural analysis. The morphology and defective substructure of the coating were studied. Hardness and Young's modulus, friction coefficient and wear resistance of the formed coating were determined. It has been established that the electro-explosive coating is multi-element and multi-phase and possesses submicro-and nanocrystalline structure, high strength and tribological properties. It was found, that the formation of TiNb coating is accompanied by a multiple (more than 2 times) decrease in the wear parameter, i.e. wear resistance increase of the surface layer, an increase in the friction coefficient by 1.5 times, significant increase in hardness (1.5 times) and Young's modulus (1.3 times).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-40

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomat. 8 (2012) 3888-3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[2] A. Kajzer, M. Antonowicz, B. Ziębowicz, Studies of the corrosion resistance properties of bone screws made from 316L stainless steel in ringer's solution, Arch. Metall. Mater. 63 (2018), 1, 323-328.

Google Scholar

[3] K. Kosayadiloka, N. Tangjit, S. Luppanapornlarp, P. Santiwong, Metal ion release and cytotoxicity of titanium orthodontic miniscrews, Key Engineering Materials. 730 (2017) 141-147.

DOI: 10.4028/www.scientific.net/kem.730.141

Google Scholar

[4] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine, Springer, Berlin, (2001).

Google Scholar

[5] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mat. Sci. 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[6] M. Niinomi, Recent metallic materials for biomedical applications, Metallurg. Mat. Trans. A. 33 (2002).

Google Scholar

[7] S. Hanada, H. Matsumoto, S. Watanabe, Mechanical compatibility of titanium implants in hard tissues, Int. Cong. Ser. 1284 (2005) 239-247.

DOI: 10.1016/j.ics.2005.06.084

Google Scholar

[8] Y.H. Hon, J.Y. Wang, Y.N. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, Mat. Trans. 44 (2003) 2384–2390.

DOI: 10.2320/matertrans.44.2384

Google Scholar

[9] J.A. Davidson and P. Kovacs, U.S. Patent 5,954,724. (1992).

Google Scholar

[10] C.M. Lee, C.P. Ju, J.H. Chern Lin, Structure–property relationship of cast Ti–Nb alloys, J. Oral Rehabilit. 29 (2002) 314-322.

DOI: 10.1046/j.1365-2842.2002.00825.x

Google Scholar

[11] Yu. Sharkeev, E. Komarova, M. Sedelnikova, Z. Sun, Q. Zhu, J. Zhang, T. Tolkacheva, P. Uvarkin, Structure and properties of micro-arc calcium phosphate coatings on pure titanium and Ti–40Nb alloy, Trans. Nonf. Met. Soc. China. 27 (2017) 125-133.

DOI: 10.1016/s1003-6326(17)60014-1

Google Scholar

[12] D.A. Romanov, V.E. Gromov, A.M. Glezer, S.V. Panin, A.P. Semin, Structure of electro-explosion resistant coatings consisting of immiscible components, Mater. Lett. 188 (2017) 25-28.

DOI: 10.1016/j.matlet.2016.10.076

Google Scholar

[13] D.A. Romanov, K.V. Sosnin, V.E. Gromov, V.A. Bataev, Y.F. Ivanov, A.M. Glezer, R.V. Sundeev, Titanium-zirconium coatings formed on the titanium implant surface by the electroexplosive method, Mater. Lett. 242 (2019) 79-82.

DOI: 10.1016/j.matlet.2019.01.088

Google Scholar

[14] D.A. Romanov, S.V. Moskovskii, K.V. Sosnin, V.E. Gromov, V.A. Bataev, Structure and electrical erosion resistance of an electro-explosive coating of the CuO-Ag system, Mater. Res. Express 6 (2019) 055042.

DOI: 10.1088/2053-1591/ab0672

Google Scholar

[15] D.A. Romanov, S.V. Moskovskii, E.A. Martusevich, E.A. Gayevoy, V.E. Gromov, Structural-phase state of the system CdO-Ag coating / copper substrate, formed by electroexplosive method, Metalurgija. 57 (2018) 299-302.

DOI: 10.1063/1.5083498

Google Scholar

[16] M. Wang, W. Mei, Y. Wang, Simulation of femtosecond laser ablation sapphire based on free electron density, Opt. Laser Technol. 113 (2019) 123-128.

DOI: 10.1016/j.optlastec.2018.12.007

Google Scholar

[17] C. Mallick, M. Bandyopadhyay, R. Kumar, Plasma characterization of a microwave discharge ion source with mirror magnetic field configuration, Rev. Sci. Instrum. 89 (2018) 125112.

DOI: 10.1063/1.5048292

Google Scholar

[18] S. Ghosh, J. Basu, D. Ramachandran, E. Mohandas, M. Vijayalakshmi, A unified approach to phase and microstructural stability for Fe-ETM alloys through Miedema's model, Intermetallics. 23 (2012) 148-157.

DOI: 10.1016/j.intermet.2011.11.016

Google Scholar

[19] B.P. Bewlay, M.R. Jackson, R.R. Bishop, The Nb-Ti-Si ternary phase diagram: Determination of solid-state phase equilibria in Nb- and Ti-rich alloys, J. of Phase Equilib. 19 (1998) 577-586.

DOI: 10.1361/105497198770341789

Google Scholar

[20] L.K. Kondratenko, L.N. Guseva, Phase transformations in alloys of titanium with niobium on quenching and tempering, Russian metallurgy. Metally. 1 (1989) 88-94.

Google Scholar