[1]
M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomat. 8 (2012) 3888-3903.
DOI: 10.1016/j.actbio.2012.06.037
Google Scholar
[2]
A. Kajzer, M. Antonowicz, B. Ziębowicz, Studies of the corrosion resistance properties of bone screws made from 316L stainless steel in ringer's solution, Arch. Metall. Mater. 63 (2018), 1, 323-328.
Google Scholar
[3]
K. Kosayadiloka, N. Tangjit, S. Luppanapornlarp, P. Santiwong, Metal ion release and cytotoxicity of titanium orthodontic miniscrews, Key Engineering Materials. 730 (2017) 141-147.
DOI: 10.4028/www.scientific.net/kem.730.141
Google Scholar
[4]
D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine, Springer, Berlin, (2001).
Google Scholar
[5]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mat. Sci. 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[6]
M. Niinomi, Recent metallic materials for biomedical applications, Metallurg. Mat. Trans. A. 33 (2002).
Google Scholar
[7]
S. Hanada, H. Matsumoto, S. Watanabe, Mechanical compatibility of titanium implants in hard tissues, Int. Cong. Ser. 1284 (2005) 239-247.
DOI: 10.1016/j.ics.2005.06.084
Google Scholar
[8]
Y.H. Hon, J.Y. Wang, Y.N. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, Mat. Trans. 44 (2003) 2384–2390.
DOI: 10.2320/matertrans.44.2384
Google Scholar
[9]
J.A. Davidson and P. Kovacs, U.S. Patent 5,954,724. (1992).
Google Scholar
[10]
C.M. Lee, C.P. Ju, J.H. Chern Lin, Structure–property relationship of cast Ti–Nb alloys, J. Oral Rehabilit. 29 (2002) 314-322.
DOI: 10.1046/j.1365-2842.2002.00825.x
Google Scholar
[11]
Yu. Sharkeev, E. Komarova, M. Sedelnikova, Z. Sun, Q. Zhu, J. Zhang, T. Tolkacheva, P. Uvarkin, Structure and properties of micro-arc calcium phosphate coatings on pure titanium and Ti–40Nb alloy, Trans. Nonf. Met. Soc. China. 27 (2017) 125-133.
DOI: 10.1016/s1003-6326(17)60014-1
Google Scholar
[12]
D.A. Romanov, V.E. Gromov, A.M. Glezer, S.V. Panin, A.P. Semin, Structure of electro-explosion resistant coatings consisting of immiscible components, Mater. Lett. 188 (2017) 25-28.
DOI: 10.1016/j.matlet.2016.10.076
Google Scholar
[13]
D.A. Romanov, K.V. Sosnin, V.E. Gromov, V.A. Bataev, Y.F. Ivanov, A.M. Glezer, R.V. Sundeev, Titanium-zirconium coatings formed on the titanium implant surface by the electroexplosive method, Mater. Lett. 242 (2019) 79-82.
DOI: 10.1016/j.matlet.2019.01.088
Google Scholar
[14]
D.A. Romanov, S.V. Moskovskii, K.V. Sosnin, V.E. Gromov, V.A. Bataev, Structure and electrical erosion resistance of an electro-explosive coating of the CuO-Ag system, Mater. Res. Express 6 (2019) 055042.
DOI: 10.1088/2053-1591/ab0672
Google Scholar
[15]
D.A. Romanov, S.V. Moskovskii, E.A. Martusevich, E.A. Gayevoy, V.E. Gromov, Structural-phase state of the system CdO-Ag coating / copper substrate, formed by electroexplosive method, Metalurgija. 57 (2018) 299-302.
DOI: 10.1063/1.5083498
Google Scholar
[16]
M. Wang, W. Mei, Y. Wang, Simulation of femtosecond laser ablation sapphire based on free electron density, Opt. Laser Technol. 113 (2019) 123-128.
DOI: 10.1016/j.optlastec.2018.12.007
Google Scholar
[17]
C. Mallick, M. Bandyopadhyay, R. Kumar, Plasma characterization of a microwave discharge ion source with mirror magnetic field configuration, Rev. Sci. Instrum. 89 (2018) 125112.
DOI: 10.1063/1.5048292
Google Scholar
[18]
S. Ghosh, J. Basu, D. Ramachandran, E. Mohandas, M. Vijayalakshmi, A unified approach to phase and microstructural stability for Fe-ETM alloys through Miedema's model, Intermetallics. 23 (2012) 148-157.
DOI: 10.1016/j.intermet.2011.11.016
Google Scholar
[19]
B.P. Bewlay, M.R. Jackson, R.R. Bishop, The Nb-Ti-Si ternary phase diagram: Determination of solid-state phase equilibria in Nb- and Ti-rich alloys, J. of Phase Equilib. 19 (1998) 577-586.
DOI: 10.1361/105497198770341789
Google Scholar
[20]
L.K. Kondratenko, L.N. Guseva, Phase transformations in alloys of titanium with niobium on quenching and tempering, Russian metallurgy. Metally. 1 (1989) 88-94.
Google Scholar