[1]
S. Kumar, R. Kumar, A. Bandopadhyay, Innovative methodologies for the utilisation of wastes from metallurgical and allied industries, Resources, Conservation and Recycling. 48.4 (2006) 301-314.
DOI: 10.1016/j.resconrec.2006.03.003
Google Scholar
[2]
I. Yu. Roshchupkina, et al., Innovative technology developments aimed at structural-chemical modification of lining materials based on nonferrous metalurgy waste and phosphate binders, Refractories and Industrial Ceramics. 56.4 (2015) 398-401.
DOI: 10.1007/s11148-015-9855-8
Google Scholar
[3]
M. K. Imangazin, et al., Innovative Directions for Utilization of Ferrous Metallurgy Waste in Ceramic Brick Production, Metallurgist. 61.1-2 (2017) 111-115.
DOI: 10.1007/s11015-017-0462-4
Google Scholar
[4]
E.H. Rybicka, Impact of mining and metallurgical industries on the environment in Poland, Applied Geochemistry. 11.1-2 (1996) 3-9.
DOI: 10.1016/0883-2927(95)00083-6
Google Scholar
[5]
A. Gorokhovsky, et al., Inorganic Wastes in the Manufacture of Glass and Glass‐Ceramics: Quartz‐Feldspar Waste of Ore Refining, Metallurgical Slag, Limestone Dust, and Phosphorus Slurry, Journal of the American Ceramic Society. 85.1 (2002) 285-287.
DOI: 10.1111/j.1151-2916.2002.tb00085.x
Google Scholar
[6]
B. Lottermoser, Mine wastes, Springer-Verlag, Berlin Heidelberg, (2007).
Google Scholar
[7]
K.A. Hudson-Edwards, H.E. Jamieson, B. G. Lottermoser, Mine wastes: past, present, future, Elements. 7.6 (2011) 375-380.
DOI: 10.2113/gselements.7.6.375
Google Scholar
[8]
V.Z. Abdrakhimov, Making Ceramic Products From Nonferrous Metallurgy and Power Generation Waste " (Proizvodstvo keramicheskikh izdely na osnove otkhodov energetiki i tsvetnoy metallurgii). Ust-Kamenogorsk: East Kazakhstan State Technical University, (1997).
DOI: 10.17580/gzh.2017.08.08
Google Scholar
[9]
N.V. Boltakova, et al., Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000–2015, Waste Management. 60 (2017) 230-246.
DOI: 10.1016/j.wasman.2016.11.008
Google Scholar
[10]
A.V. Abdrakhimov, V.Z. Abdrakhimov, Phase Transformations in Firing Tiles From Man-Made Raw Materials (Fazovye prevrashcheniya pri obzhige cherepitsy iz tekhnogennogo syrya), News of Higher Educational Institutions. Construction. 12 (2003) 36–41.
Google Scholar
[11]
V.Z. Abdrakhimov, Ye.S. Abdrakhimova, D.V. Abdrakhimov, A.V. Abdrakhimov, Clayey Portion of Zircon-Ilmenite Ore Gravity Tailings ¾ Raw Materials for Ceramic Production (Glinistaya chast «khvostov» gravitatsii tsirkon-ilmenitovykh rud ¾ syrye dlya proizvodstva keramicheskikh materialov), Refractories and Technical Ceramics. 5 (2005) 38–43.
DOI: 10.4028/www.scientific.net/msf.989.47
Google Scholar
[12]
G.I. Litvinova, V.P. Pirozhkova, Petrography of nonmetallic inclusions (Petrografiya nemetallicheskikh vklyucheny), Metallurgiya, Moscow (1972).
Google Scholar
[13]
Ye.S. Abdrakhimov, V.Z. Abdrakhimov, Use of Wollastonite in the Production of Ceramics (Ispolzovaniye vollastonita v proizvodstve keramicheskikh izdely), Materialovedeniye. 10 (2004) 47-52.
Google Scholar
[14]
V.P. Petrov, Ye.D. Belyankina, B.Z. Chistyakov, V.V. Kozyryov, Wollastonite, Nauka, Moscow, (1982).
Google Scholar
[15]
G. M. Azarov, et al. Wollastonite raw materials and their applications (a review), Glass and Ceramics. 52.9 (1995) 237-240.
Google Scholar
[16]
S. A. M. Abdel-Hameed, A. A. El-Kheshen, Thermal and chemical properties of diopside-wollastonite glass-ceramics in the SiO2–CaO–MgO system from raw materials, Ceramics international. 29.3 (2003) 265-269.
DOI: 10.1016/s0272-8842(02)00114-1
Google Scholar
[17]
M. I. Alemany, et al., Effect of materials' processing methods on the in vitro,bioactivity of wollastonite glass-ceramic materials, Journal of non-crystalline solids. 351.19-20 (2005) 1716-1726.
DOI: 10.1016/j.jnoncrysol.2005.04.062
Google Scholar
[18]
J. L. Devore, Probability and Statistics for Engineering and the Sciences, 9th ed., California Polytechnic State University, San Luis, Obispo, (2014).
DOI: 10.31979/mti.2023.2153
Google Scholar
[19]
B. Dan-asabe, et al., Statistical modeling and optimization of the flexural strength, water absorption and density of a doum palm-Kankara clay filler hybrid composite , Journal of King Saud University-Engineering Sciences, (2017).
DOI: 10.1016/j.jksues.2017.11.003
Google Scholar
[20]
M. Turki, et al., Multidiscipline Modeling in Materials and Structures, Materials and Structures. 13.2 (2017) 284-296.
Google Scholar