[1]
M.I. Suleiman, R.C. Newman, The use of very weak galvanostatic polarization to study localized corrosion stability in stanless steel. Corrosion scince, 1994, 1657-1665.
DOI: 10.1016/0010-938x(94)90060-4
Google Scholar
[2]
D.D. Macdonald, On the existence of our metals-based civilization: I. Phase space analysis, J. Electrochem. Soc. 153 (2006) B213-B224.
DOI: 10.1149/1.2716006
Google Scholar
[3]
I.I. Zamaletdinov, A.B. Shein, V.I. Kichigin, Local Corrosion of Steel Powders and Castings (Lokalnaya korroziya liteynykh i poroshkovykh staley): monograph, Perm State National Research University, Perm, (2015).
Google Scholar
[4]
G.T. Burstein, C. Liu, R.M. Souto, The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution, Biomaterials, 26 (2005) 245-256.
DOI: 10.1016/j.biomaterials.2004.02.023
Google Scholar
[5]
F. Mansfeld, S. Lin Kim, H. Shih, Electrochemical impedance spectroscopy as a monitoring tool for passivation and localized corrosion of aluminum alloys, Werkstoffe und Korrosion, 39 (1988) 487-492.
DOI: 10.1002/maco.19880391102
Google Scholar
[6]
R. Baboian, Corrosion test and standards: application and interpretation, ASTM manual, series, MNL 20, Baltimore, (2005) 211-220.
Google Scholar
[7]
P. Stefec, Potentiokinetic criteria relevant to the pitting corrosion of stainless steels in chloride solutions, Werkst. und Korros, 3(33) (1982) 143-145.
DOI: 10.1002/maco.19820330304
Google Scholar
[8]
B. Baroux, P. Marcus (Ed.), Corrosion Mechanisms in Theory and Practice, CRC Press, (2012) 422 (Chapter 9).
Google Scholar
[9]
Ye.V. Pleshkova, S.S. Vinogradova, Bulletin of Kazan Technological University, 19 (2016) 97-100.
Google Scholar
[10]
Ye.V. Pleshkova, S.S. Vinogradova, Bulletin of Kazan Technological University, 18 (2015) 70-74.
Google Scholar
[11]
Yi Y., Cho P., Al Zaabi A., Addad Y., Jang C., Corros. Sci., 74, 92-97 (2013).
Google Scholar
[12]
Fraiman L; I. Pitting Development Kinetics (O kinetike razvitiya pittingov), Itogi nauki i tekhniki. Series: Korrozia i zashchita ot korrozzii. T.P. – Moscow: VINITI (1985) 3-71.
Google Scholar
[13]
E. McCafferty, R.G. Kelly, G.S. Frankel, P.M. Natishan, R.C. Newman (Eds.), Critical Factors in Localised Corrosion III, The Electrochemical Society, Pennington, (1999) 43-50.
Google Scholar
[14]
M. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy. Hoboken: John Wiley & Sons, (2008).
Google Scholar
[15]
T.E. Pou, O.J. Murphy, V. Young, J. Bockris, L. Tongson, Passive films on iron: the mechanism of breakdown in chloride containing solutions, J. Electrochem. Soc. 131 (1984) 1243-1251.
DOI: 10.1149/1.2115795
Google Scholar
[16]
Z. Jia, C. Du, C. Li, Z. Yi, X. Li, Study on pitting process of 316L stainless steel by means of staircase potential electrochemical impedance spectroscopy, International Journal of Minerals, Metallurgy and Materials, 18(1) (2011) 48-54.
DOI: 10.1007/s12613-011-0398-9
Google Scholar
[17]
J. Soltis, Passivity breakdown, pit initiation and propagation of pits in metallic materials– Review, Corrosion Science, 4-6 (2014).
DOI: 10.1016/j.corsci.2014.10.006
Google Scholar
[18]
Yi Y., Cho P., Al Zaabi A., Addad Y., Jang C., Corros. Sci., 74, 92-97 (2013).
Google Scholar
[19]
Zhang Y., Urquidi-Macdonald M., Engelhardt G.R., Macdonald D.D, Electrochim. Acta, 69, 12–18 (2012).
Google Scholar