Staged Local Dissolution of Stainless Steel in Chloride Solutions

Article Preview

Abstract:

The paper defines galvanostatic polarization parameters (current density and test duration), to simulate self-dissolution conditions; the results are confirmed by potentiostatic tests. It is shown that under the conditions of self-dissolution simulation, increasing the solution concentration reduces the nucleation rate, while prolonging the pitting development time. Spectral analysis of chronopotentiograms reveals low-frequency potential fluctuations that characterize the nucleation and passivation of pits at the onset of pitting corrosion. The paper describes the basic regularities, observed in the alteration of surface electrochemistry by impedance spectroscopy; such alteration corresponds to the transition from the passive area to the pitting area. The researchers propose optimal electric equivalent circuits to reflect the surface conditions in early nucleation of pits. The paper also proposes an additional pitting resistance criterion, that is, cumulative electric-charge density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.I. Suleiman, R.C. Newman, The use of very weak galvanostatic polarization to study localized corrosion stability in stanless steel. Corrosion scince, 1994, 1657-1665.

DOI: 10.1016/0010-938x(94)90060-4

Google Scholar

[2] D.D. Macdonald, On the existence of our metals-based civilization: I. Phase space analysis, J. Electrochem. Soc. 153 (2006) B213-B224.

DOI: 10.1149/1.2716006

Google Scholar

[3] I.I. Zamaletdinov, A.B. Shein, V.I. Kichigin, Local Corrosion of Steel Powders and Castings (Lokalnaya korroziya liteynykh i poroshkovykh staley): monograph, Perm State National Research University, Perm, (2015).

Google Scholar

[4] G.T. Burstein, C. Liu, R.M. Souto, The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution, Biomaterials, 26 (2005) 245-256.

DOI: 10.1016/j.biomaterials.2004.02.023

Google Scholar

[5] F. Mansfeld, S. Lin Kim, H. Shih, Electrochemical impedance spectroscopy as a monitoring tool for passivation and localized corrosion of aluminum alloys, Werkstoffe und Korrosion, 39 (1988) 487-492.

DOI: 10.1002/maco.19880391102

Google Scholar

[6] R. Baboian, Corrosion test and standards: application and interpretation, ASTM manual, series, MNL 20, Baltimore, (2005) 211-220.

Google Scholar

[7] P. Stefec, Potentiokinetic criteria relevant to the pitting corrosion of stainless steels in chloride solutions, Werkst. und Korros, 3(33) (1982) 143-145.

DOI: 10.1002/maco.19820330304

Google Scholar

[8] B. Baroux, P. Marcus (Ed.), Corrosion Mechanisms in Theory and Practice, CRC Press, (2012) 422 (Chapter 9).

Google Scholar

[9] Ye.V. Pleshkova, S.S. Vinogradova, Bulletin of Kazan Technological University, 19 (2016) 97-100.

Google Scholar

[10] Ye.V. Pleshkova, S.S. Vinogradova, Bulletin of Kazan Technological University, 18 (2015) 70-74.

Google Scholar

[11] Yi Y., Cho P., Al Zaabi A., Addad Y., Jang C., Corros. Sci., 74, 92-97 (2013).

Google Scholar

[12] Fraiman L; I. Pitting Development Kinetics (O kinetike razvitiya pittingov), Itogi nauki i tekhniki. Series: Korrozia i zashchita ot korrozzii. T.P. – Moscow: VINITI (1985) 3-71.

Google Scholar

[13] E. McCafferty, R.G. Kelly, G.S. Frankel, P.M. Natishan, R.C. Newman (Eds.), Critical Factors in Localised Corrosion III, The Electrochemical Society, Pennington, (1999) 43-50.

Google Scholar

[14] M. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy. Hoboken: John Wiley & Sons, (2008).

Google Scholar

[15] T.E. Pou, O.J. Murphy, V. Young, J. Bockris, L. Tongson, Passive films on iron: the mechanism of breakdown in chloride containing solutions, J. Electrochem. Soc. 131 (1984) 1243-1251.

DOI: 10.1149/1.2115795

Google Scholar

[16] Z. Jia, C. Du, C. Li, Z. Yi, X. Li, Study on pitting process of 316L stainless steel by means of staircase potential electrochemical impedance spectroscopy, International Journal of Minerals, Metallurgy and Materials, 18(1) (2011) 48-54.

DOI: 10.1007/s12613-011-0398-9

Google Scholar

[17] J. Soltis, Passivity breakdown, pit initiation and propagation of pits in metallic materials– Review, Corrosion Science, 4-6 (2014).

DOI: 10.1016/j.corsci.2014.10.006

Google Scholar

[18] Yi Y., Cho P., Al Zaabi A., Addad Y., Jang C., Corros. Sci., 74, 92-97 (2013).

Google Scholar

[19] Zhang Y., Urquidi-Macdonald M., Engelhardt G.R., Macdonald D.D, Electrochim. Acta, 69, 12–18 (2012).

Google Scholar