[1]
F. A. Garner, M.B. Toloczko, B.H. Sence, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. Nucl. Mater., 276 (2000) 123–142.
DOI: 10.1016/s0022-3115(99)00225-1
Google Scholar
[2]
N. Saunders, A.P. Miodownik. Thermodynamic models for solution and compound phases, Pergamon Materials Series, Vol. 1, R.W. Cahn (Ed.), Elsevier Science, Oxford, (1998) 91–126.
Google Scholar
[3]
I. Mirebeau, M. Hennion, G. Parette, First measurement of short-range-order inversion as a function of concentration in a transition alloy, Phys. Rev. Lett., 53 (1984) 687–690.
DOI: 10.1103/physrevlett.53.687
Google Scholar
[4]
I. Mirebeau, G. Parette, Neutron study of the short range order inversion in Fe1−xCrx, Phys.Rev. B, 82 (2010) 104203.
Google Scholar
[5]
P. Olsson, I.A. Abrikosov, J. Wallenius, Electronic origin of the anomalous stability of Fe-rich bcc Fe–Cr alloys, Phys. Rev. B, 73 (2006) 104416.
DOI: 10.1103/physrevb.73.104416
Google Scholar
[6]
A. A. Mirzoev, M.M. Yalalov, D.A. Mirzaev, Calculation of the energy of mixing for the Fe-Cr alloys by the first-principles methods of computer simulation, Phys. Met. Metallogr., 97 (2004) 336–341.
DOI: 10.1134/s0031918x06040065
Google Scholar
[7]
T. P. C. Klaver, R.Drautz, M.W. Finnis, Magnetism and thermodynamics of defect-free Fe-Cr alloys, Phys. Rev. B 74 (2006) 094435.
DOI: 10.1103/physrevb.74.094435
Google Scholar
[8]
P. Erhart, B. Sadigh, A. Caro, Are there stable long-range ordered Fe1−xCrx compounds?, Appl. Phys. Lett., 92 (2008) 141904.
DOI: 10.1063/1.2907337
Google Scholar
[9]
K. O. E. Henriksson, C. Björkas, K. Nordlund, Atomistic simulations of stainless steels: A many-body potential for the Fe–Cr–C system, J. Phys. Condensed Matter, 25 (2013) 445401.
DOI: 10.1088/0953-8984/25/44/445401
Google Scholar
[10]
G. L. Krasko, B. Rice, A.S. Yip, Bond-order potential for atomistic simulations in iron, J. of Computer-Aided Materials Design, 6 (1999) 129–136.
DOI: 10.21236/ada382421
Google Scholar
[11]
V. I. Iveronova, A.A. Katsnel'son. Blizhiniy poryadok v tverdykh rastvorakh [Short-range order in solid solutions], Nauka Publ., Moscow, (1977).
Google Scholar
[12]
V. M. Silonov, Blizhniy poryadok i razmernyy effekt v metallicheskikh tverdykh rastvorakh [Short-range order and size effect in metal solid solutions], Moscow State University Publ., Moscow, (2011).
Google Scholar
[13]
L. D. Fosdick, Calculation of order parameters in a binary alloy by the Monte Carlo method, Phys. Rev., 116 (1959) 565–573.
DOI: 10.1103/physrev.116.565
Google Scholar
[14]
P. A. Flinn, G.M. McManus, Monte Carlo calculation of the order-disorder transformation in the body-centered cubic lattice, Phys. Rev., 124 (1961) 54–59.
DOI: 10.1103/physrev.124.54
Google Scholar
[15]
A. A Mirzoev, N.A. Smolin, B.R. Gel'chinskiy, Novaya metodika modelirovaniya struktury blizhnego poryadka binarnykh neuporyadochennykh sistem v ramkakh metoda sil'noy svyazi [A new technique of modelling the short-range order structure of binary disordered systems within the frames of the strong bond method], Izvestiya Chelyabinskogo Nauchnogo Tsentra, 2 (1998) 21-26 (http://www.csc.ac.ru/news/1998_2/2-2-5.pdf).
Google Scholar
[16]
Information on: http://lammps.sandia.gov.
Google Scholar
[17]
Information on: https://ovito.org/.
Google Scholar