[1]
K.J.A. Kundig, J.G. Cowie, Copper and Copper Alloys, Mechanical Engineers' Handbook: Materials and Mechanical Design, Third Edition, 1 (2006) 117-220.
DOI: 10.1002/0471777447.ch4
Google Scholar
[2]
Copper Development Association Inc. and ASTM International ASTM Standard Designations for Wrought and Cast Copper and Copper Alloys, New York, (2004).
DOI: 10.1002/maco.19570080229
Google Scholar
[3]
N.B. Pugacheva, A.S. Ovchinnikov, A.V. Lebed, Analysis of defects of industrial brass blanks, Tsvetnye Metally, 10 (2014) 71-77.
Google Scholar
[4]
G.L. Garagnani, F. Piasentini, G.V.P. Cesa, Microstructural and mechanical characterization of foundry copper alloys for artistic applications, Metallurgia Italiana, 98(1) (2006) 39-46.
Google Scholar
[5]
M.A. Borovykh, O.A. Chikova, V.S. Tsepelev, V.V. V'yukhin, Effect of slag inclusions on the density and the surface tension of liquid 32G2 and 32G1 steels, Russian Metallurgy (Metally), 9 (2017) 748-751.
DOI: 10.1134/s003602951709004x
Google Scholar
[6]
M.A. Borovykh, V.V. V'yukhin, O.A. Chikova, V.S. Tsepelev, Influence of defects on the viscosity of liquid 32G1 and 32G2 steel, Steel in Translation, 45(6) (2015) 403-406.
DOI: 10.3103/s0967091215060066
Google Scholar
[7]
P.S. Popel, O.A. Chikova, V.M. Matveev, Metastable Colloidal States of Liquid Metallic Solutions, High Temperature Materials and Processes, 14(4) (1995) 219-234.
DOI: 10.1515/htmp.1995.14.4.219
Google Scholar
[8]
A.L. Bel'tyukov, S.G. Menshikova, and V.I. Lad'yanov, Viscosity of Hypereutectic Aluminum-Based Iron-Alloyed Melts, High Temperature, 53(4) (2015) 491–496.
DOI: 10.1134/s0018151x15030049
Google Scholar
[9]
O.A. Chikova, K.V. Nikitin, O.P. Moskovskikh, V.S. Tsepelev, Viscosity end electrical conductivity of liquid hypereutectic alloys Al-Si, Acta Metallurgica Slovaca, 22(3) (2016) 153-163.
DOI: 10.12776/ams.v22i3.774
Google Scholar
[10]
A. Yakymovych, I. Shtablavyi, S. Mudry, Structural studies of liquid Co–Sn alloys, Journal of Alloys and Compounds, 610 (2014) 438–442.
DOI: 10.1016/j.jallcom.2014.05.020
Google Scholar
[11]
Fang-Qiu Zu, Temperature-Induced Liquid-Liquid Transition in Metallic Melts: A Brief Review on the New Physical Phenomenon, Metals, 5 (2015) 395-417.
DOI: 10.3390/met5010395
Google Scholar
[12]
I.G. Brodova, I.V. Polents, D.V. Bashlikov, P.S. Popel, O.A. Chikova, The forming mechanism of ultradispersed phases in rapidly solidified aluminium alloys, Nanostructured Materials, 6(1-4) (1995) 477-479.
DOI: 10.1016/0965-9773(95)00100-x
Google Scholar
[13]
K.V. Nikitin, V.I. Nikitin, I.Y. Timoshkin, D.S. Krivopalov, D.G. Chernikov, Influence of the structure of charge billets, overheating, and holding time of melts on the properties of Al-5 wt % Cu alloys in liquid and solid states, Russian Journal of Non-Ferrous Metals, 56(2) (2015) 165-170.
DOI: 10.3103/s1067821215020157
Google Scholar
[14]
V.I. Nikitin, Heredity and genetic engineering technology in cast alloys, Litejnoe Proizvodstvo, 10 (2002) 8-10.
Google Scholar
[15]
G.V. Tyagunov, V.S. Tsepelev, M.N. Kushnir, and G.N. Yakovlev, Unit for measurement of the kinematic viscosity of metallic melts, Zavod. Lab., 10 (1980) 919–920.
Google Scholar
[16]
A.H. Hameed, A.T. Abed, Effect of secondary cooling configuration on microstructure of cast in semi-continuous casting of copper and brass, Applied mechanics and materials, 575 (2014) 8-12.
DOI: 10.4028/www.scientific.net/amm.575.8
Google Scholar
[17]
Y. Liu, J. Liu, S. Zhang, H. Li, J. Wu, Formation mechanism and control measures on surface cracks on TP2 copper tube in horizontal continuous casting, Tezhong Zhuzao Ji Youse Hejin, Special Casting and Nonferrous Alloys, 36(9) (2016) 975-979.
Google Scholar
[18]
J.-S. Liu, D.-Y. Chen, L.-P. Chen, S.-H. Zhang, Effect of annealing treatment on microstructure and mechanical properties of TP2 copper tubes, Cailiao Rechuli Xuebao, Transactions of Materials and Heat Treatment, 37(3) (2016) 107-113.
Google Scholar
[19]
A. Fatemi, M.R. Morovvati, F.R. Biglari, The effect of tube material, microstructure, and heat treatment on process responses of tube hydroforming without axial force, International Journal of Advanced Manufacturing Technology, 68(1-4) (2013) 263-276.
DOI: 10.1007/s00170-013-4727-1
Google Scholar
[20]
A.A. Belousov, S.G. Bakhvalov, S.N. Aleshina, E.A. Pastukhov, V.M. Denisov, Physico-chemical properties of liquid copper and its alloys. Directory. Ekaterinburg: UrORAN, (1997).
Google Scholar