[1]
V.A. Kudrin, Teoriya I texnologiya proizvodstva stali [Theory and technology of steel production]. Moskow, ACT Publishing LLC, (2003).
Google Scholar
[2]
I.S. Kulikov, Raskislenie metallov [Deoxidation metals]. Moskow, Metallurgy, (1975).
Google Scholar
[3]
A.M. Bigeev, Metallurgiyastali. Teoriya I texnologiya plavki stali [Steel metallurgy. Theory and technology of steel melting]. Magnitogorsk, MSTU, (2000).
Google Scholar
[4]
D.A. Dyudkin, V.V. Kisilenko, Sovremennaya texnologiya proizvodstva stali [Modern steel production technology]. Moskow, Heat engineer, (2007).
Google Scholar
[5]
T. Sjökvist, M. Göransson, P. Jönsson & P. Cowx, Influence of ferromanganese additions on microalloyed engineering steel, Ironmaking & Steelmaking, 30:1 (2003) 73-80.
DOI: 10.1179/030192303225009461
Google Scholar
[6]
M.M. Pande, M. Guo, X. Guo at al. (2010) Ferroalloy quality and steel cleanliness, Ironmaking& Steelmaking, 37:7, 502-511.
DOI: 10.1179/030192310x12700328925787
Google Scholar
[7]
K.V. Grigorovich, A.K. Garber, A.V. Kushnarev, Yu.P. Petrenko, I.V. Kostenko. Optimizing the ladle treatment of rail steel at OAO NTMK. (2008) Steel in Translation, 38:10, 858-863.
DOI: 10.3103/s0967091208100161
Google Scholar
[8]
V.A. Chaikin, A.V. Chaikin, A.D. Kasimgazinov, P.O. Bykov, The new material for steel diffusive deoxidizing in the unit for complex steel treatment. Chernye Metally, 9 (2018) 10-15.
Google Scholar
[9]
A.Y. Kem Use of Alternative Carbon Sources for Slag Foaming in Electric Arc Furnaces. Metallurgist, 61(9-10) (2018) 751-757.
DOI: 10.1007/s11015-018-0559-4
Google Scholar
[10]
V.A. Golubtsov, I.V. Riabchikov, Improving the quality of a wide range of steel by modifying [Povyshenie kachestva stali shirokogo sortamenta modifitsirovaniem], Chernye Metally [Ferrous metals], 7 (2015) 21-30.
Google Scholar
[11]
O.Yu. Sheshukov, I.V. Nekrasov, V.N. Nevidimov at al., Temperaturnyj rezhim shlaka sverhmoshchnoj DSP i tekhnologicheskie parametry plavki. [Slag temperature regime of super power EAF and melting technological parameters]. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. [Vectnik of Nosov Magnitogorsk State Technical University], 1(29) (2010) 29-31.
Google Scholar
[12]
V.A. Novikov, V.S. Dub, S.V. Novikov at al., Improving the technology of deoxidation in the processing of steel on the installation of the ladle furnace and vacuuming [Sovershenstvovanie tekhnologii raskisleniia pri obrabotke stali na ustanovke vnepechnogo rafinirovaniia i vakuumirovaniia]. Elektrometallurgiia [Electrometallurgy], 8 (2012) 13-16.
Google Scholar
[13]
A.V. Tsiutsiura, S.A. Koval, A.V. Stefanets at al., Study of complex deoxidation of converter and open-hearth steel with silicon, manganese and aluminum [Issledovanie kompleksnogo raskisleniia konverternoi i martenovskoi stali kremniem, margantsem i aliuminiem]. Chernaia metallurgiia. Biulleten nauchno-tekhnicheskoi i ekonomicheskoi informatsii [Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information], 9(1341) (2011) 31-34.
Google Scholar
[14]
I.I. Zubkov, S.A. Tarakanov, D.V. Dremov at al. Improvement of Steel Deoxidizing Process at OAO Oskol Metallurgical Machine-Building Plant [Sovershenstvovanie texnologicheskogo processa raskisleniya stali v OAO «Oskol`skij zavod metallurgicheskogo mashinostroeniya»]. Litejnoe proizvodstvo [Foundry. Technologies and Equipment], 3 (2006) 29-32.
Google Scholar
[15]
O. Wijk, V. Brabie. The Purity of Ferrosilicon and Its Influence on Inclusion Cleanliness of Steel. ISIJ Intern, 36:36 (1996) 132-135.
DOI: 10.2355/isijinternational.36.suppl_s132
Google Scholar
[16]
Zhao, Y. , Wang, G. , Shang, D. , Lei, H. , Wang, Q. and Cao, L. Mechanisms on Superfine Alumina Inclusions Formation by Al‐Deoxidation Reaction for liquid Iron. Steel research int., 89:11 (2018) 1800255.
DOI: 10.1002/srin.201800255
Google Scholar
[17]
Min Wang, Yan-ping Bao, Li-dong Xing. Characteristic Transformation of Manganese-containing Inclusions during Al-killed Process in Ultra-low Carbon Interstitial-free Steel., ISIJ International, 58:5 (2018) 886-891.
DOI: 10.2355/isijinternational.isijint-2017-682
Google Scholar
[18]
S.V. Denisov, A.N. Zavalishchin, E.V. Kozhevnikova, M.I. Rumyancev, Izmenenie struktury nizkolegirovannoy stali v processe proizvodstva. [Change of microstructure of microalloyed steels during the manufacturing process]. Vestnik Magnitogorskogo gosudarstvennogo tehnicheskogo universiteta im. G.I. Nosova. [Vectnik of Nosov Magnitogorsk State Technical University], 3(43) (2013) 51-54.
DOI: 10.17580/chm.2020.12.08
Google Scholar
[19]
Fruehan R.J. Ladle Metallurgy Principles and Practices; Iron and Steel Society: USA, (1985).
Google Scholar
[20]
E. Toshihiko, Optimizing Steelmaking System for Quality Steel Mass Production for Sustainable Future of Steel Industry, Steel research int., 85:8 (2014) 1274-1282.
DOI: 10.1002/srin.201300278
Google Scholar
[21]
Behera, N. , Raddadi, A. , Ahmad, S. , Tewari, N. and Zeghaibi, O. Use of Al‐Killed Ladle Furnace Slag in Si‐Killed Steel Process to Reduce Lime Consumption, Improve Slag Fluidity. In Advances in Molten Slags, Fluxes, and Salts (eds R.G. Reddy, P. Chaubal, P.C. Pistorius and U. Pal), (2016).
DOI: 10.1007/978-3-319-48769-4_110
Google Scholar
[22]
A.N. Conejo & D.E. Hernández, Optimization of Aluminum Deoxidation Practice in the Ladle Furnace, Materials and Manufacturing Processes, 21:8 (2006) 796-803.
DOI: 10.1080/10426910600837764
Google Scholar