[1]
P.W Bridgman,. Studies in Large Plastic Flow and Fracture. N.Y. etc.: McGrawHill, (1952).
Google Scholar
[2]
P.W. Bridgman, Investigation of large plastic deformations and fractures: Influence of high hydrostatic pressure on mechanical properties of materials, translation from English, Ed.2, corr., (2010).
Google Scholar
[3]
N. N. Davidenkov, N. I. Spiridonova, Analysis of the stress state in the neck of a stretched sample, Plant. lab. 6 (1945) 583-593.
Google Scholar
[4]
A. A. Bogatov, Mechanical properties and models of destruction of metals, Yekaterinburg: USTU-UPI, (2002).
Google Scholar
[5]
Vorobyov E. V, Features of neck formation at low-temperature intermittent fluidity of metals. Message 1. Axisymmetric deformation, Problems of strength. 3(2008) 92-199.
Google Scholar
[6]
V.P. Bagmutov, D.I. Vodop'janov, A.V. Korobov, P.V. Kuimov. Method to detect maximum true stresses and deformations. Pat. 2516592 of the Russian Federation, IPC G01N 2/08. No. 2012154750/28, Appl. 17.12.2012; publ. 20.05.(2014).
Google Scholar
[7]
Yu. Loginov, A. Ershov, The influence of hardening curve on deformation localization during the upsetting of titanium article, Titan. 1 (2012) 22-28.
Google Scholar
[8]
A. A. Ershov, Yu. N. Loginov, S. L. Demakov, Assessing the consequences of the softening of metal during hot-working by using the software package QForm V8, Metallurgist. 59 (2015) 659-663.
DOI: 10.1007/s11015-015-0155-9
Google Scholar
[9]
D. A. Pavlov, M. V. Erpalov, G. V. Shimov [et al.], Investigation of the influence of material properties on the inhomogeneity of deformation during lengthwise rolling of tubes on a stub mandrel, Chernye Metally. 10 (2018) 17-21.
DOI: 10.1016/j.matpr.2019.07.053
Google Scholar
[10]
G. V. Shimov, M. V. Erpalov, D. A. Pavlov, Effect of the material model on the stress-strain state in the deformation zone during pipe drawing, Chernye Metally. 10 (2018) 27-32.
Google Scholar
[11]
B.C. Cerik, B. Park, S-J. Park, J. Choung, Modeling, testing and calibration of ductile crack formation in grade DH36 ship plates, Marine Structures. 66 (2019) 27–43.
DOI: 10.1016/j.marstruc.2019.03.003
Google Scholar
[12]
V. Backofen, Deformation processes , Monograph, Moscow: Metallurgy, (1977).
Google Scholar
[13]
A. Zahedi, B. M. Dariani, M. Mirnia, Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model, International Journal of Mechanical Sciences. 153-154 (2019) 341-358.
DOI: 10.1016/j.ijmecsci.2019.02.002
Google Scholar
[14]
B. Güler, M. Efe, Forming and fracture limits of sheet metals deform- ing without a local neck, J Mater Process Technol. 252 (2018) 477-84.
DOI: 10.1016/j.jmatprotec.2017.10.004
Google Scholar
[15]
P. I. Polukhin, G. Ya. Gun, A. M. Galkin, Resistance to plastic deformation of metals and alloys, Metallurgiya, Moscow, (1976).
Google Scholar
[16]
S.G. Myslivets, Mathematical analysis: Textbook. the manual for Ekon, Krasnoyar. state University-Krasnoyarsk, (2004).
Google Scholar