[1]
V.M. Sizyakov, A.A. Vlasov, V.Yu. Bazhin, Strategy tasks of the Russian metallurgical complex, Tsvetnye Metally. 1 (2016) 32-37.
DOI: 10.17580/tsm.2016.01.05
Google Scholar
[2]
B.P. Kulikov, S.P. Istomin, Recycling aluminum production waste, second ed., Krasnoyarsk: Classic Center LLC, (2004).
Google Scholar
[3]
A.E. Patrushov, N.V. Nemchinova, V.E. Chernyh, A.A. Tyutrin, Modern methods of processing of technogenic raw materials of electric steel production, Irkutsk: Proceedings of Irkutsk State Technical University. 4 (2018) 183–190.
DOI: 10.21285/1814-3520-2018-4-183-190
Google Scholar
[4]
N.V. Nemchinova, L.V. Shumilova, S.P. Salkhofer, K.K. Razmakhnin, O.A. Chernova, Complex sustainable waste management. Metallurgical industry, Publishing House of Academy of Natural History, Moscow, (2016).
Google Scholar
[5]
M.I. Gasik, M.M. Gasik, Electrothermy of silicon, Dnepropetrovsk: National Metallurgical Academy of Ukraine, (2011).
Google Scholar
[6]
E. Ringdalen, M. Tangstad, Reaction mechanisms in carbothermic production of silicon, study of selected reactions, The Minerals, Metals & Materials Society. (2012) 195–203.
DOI: 10.1002/9781118364765.ch24
Google Scholar
[7]
J. Vangskåsen, Metal-producing Mechanisms in the Carbothermic Silicon Process, NTNU-Trondheim, (2012).
Google Scholar
[8]
I. Kero, S. Grådahl, G. Tranell, Airborne emissions from Si/FeSi production, JOM. 2 (2017) 365-380.
DOI: 10.1007/s11837-016-2149-x
Google Scholar
[9]
N.V. Nemchinova, A.A. Tyutrin, Yu.V. Sokolnikova, T.T. Fereferova, Analytical investigations of silicon production raw materials and products, Journal of Siberian Federal University-Chemistry. 1 (2017) 37-48.
DOI: 10.17516/1998-2836-0004
Google Scholar
[10]
J. Thonstad, P. Fellner, G.M. Haarberg, J. Hivas, H. Kvande and A. Sterten, Aluminium electrolysis, third ed., Dusseldorf: Aluminium Verlag, (2001).
Google Scholar
[11]
H. Gaertner, A.P. Ratvik, T.A. Aarhaug, Particulate emissions from electrolysis cells, The Minerals, Metals & Materials Society. (2011) 345-350.
DOI: 10.1002/9781118061992.ch62
Google Scholar
[12]
A.M. Vinogradov, A.A. Pinaev, D.A. Vinogradov, A.V. Puzin, V.G. Shadrin, N.V. Zor'ko, V.V. Somov, Improving the efficiency of the shelter Soderberg electrolyzers, Izvestiya vuzov. Tsvetnaya metallurgiya. 1 (2017) 19-30.
DOI: 10.17073/0021-3438-2017-1-19-30
Google Scholar
[13]
A.N. Baranov, P.A. Yakushevich, Briquetting of fluorocarbon-containing aluminum production wastes, Academic Journal of Western Siberia. 3 (2014) 128–130.
Google Scholar
[14]
A.N. Baranov, P.A. Yakushevich, E.V. Timkina, Production of briquettes from aluminum production wastes and their physico-chemical properties, Irkutsk: Proceedings of Irkutsk State Technical University. 11 (2012) 143-148.
DOI: 10.21285/1814-3520-2017-7-143-151
Google Scholar
[15]
N.V. Nemchinova, G.G. Mineev, A.A. Tyutrin, A.A. Yakovleva, Utilization of dust from silicon production, Steel in Translation. 12 (2017) 763–767.
DOI: 10.3103/s0967091217120087
Google Scholar
[16]
O.V. Avchenko, K.V. Chudnenko, I.A. Aleksandov, Fundamentals of physico-chemical modeling of mineral systems, Moscow: Nauka, (2009).
Google Scholar
[17]
N.V. Nemchinova, S.S. Bel'skij, A.V. Aksenov, A.A. Vasil'ev, Using the free energy minimization parameter to study metallurgical processes, Irkutsk: Proceedings of Irkutsk State Technical University. 3 (2014) 151-158.
Google Scholar
[18]
A.A. Tyutrin, A.K. Timofeev, Application of mathematical modeling methods in studying the processes of obtaining and refining metallurgical nitrogen. Modern problems of science and education. 4 (2012).
Google Scholar
[19]
I.K. Karpov, K.V. Chudnenko, D.A. Kulik Modeling chemical mass transfer in gheochemical processes: thermodynamic relations, conditions of equilibria, and numerical algorithms, Amer. J. Sci. 8 (1997) 767–806.
DOI: 10.2475/ajs.297.8.767
Google Scholar
[20]
D.A. Kulik, GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Computational Geosciences. 1 (2013) 1–24.
DOI: 10.1007/s10596-012-9310-6
Google Scholar
[21]
S.J.B. Reed, Electron microprobe analysis. Cambridge: Cambridge Univ. Press, (1997).
Google Scholar