RETRACTED: Studies of the Electrodynamic Parameters of a Powdered Material Depending on the Fractional Composition in the Frequency Range of 8-12 Ghz

Retracted:

This paper has been retracted by editorial office due to double submission of the research results to another journal (doi: 10.1109/EnT47717.2019.9030578)

Article Preview

Abstract:

This article describes a method for measuring the dielectric constant and magnetic permeability of alumina powder (corundum) in the frequency range of 8-12 GHz. The results of studies of permeability and permittivity using a segment of a coaxial transmission line depending on the size of corundum particles are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-364

Online since:

May 2020

Export:

Share:

Citation:

* - Corresponding Author

[1] Handoko, E., Mangasi, A.M., Iwan, S., Randa, M., Alaydrus, M. Measurement of complex permittivity and permeability of hexagonal ferrite composite material using a waveguide in microwave band, Proceeding - 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, ICRAMET 2016, 7849576 (2017) 28-30.

DOI: 10.1109/icramet.2016.7849576

Google Scholar

[2] A.I. Malkin, N.C. Knyazev, Experimental set up for the measurements of dielectric permittivity and magnetic permiability in dielectric materials, Proc. of XIV Int. Conf. Physics and Technical Applications of Wave Processes,, November 22-24, 2016, Samara, Russia, (2016) 223-224.

Google Scholar

[3] Dimri, M.C., Stern, R., Kashyap, S.C., Bhatti, K.P., Dube, D.C. Magnetic and dielectric properties of pure and doped barium hexaferrite nanoparticles at microwave frequencies Physica Status Solidi (A) Applications and Materials Science, 206(2) (2009) 270-275.

DOI: 10.1002/pssa.200824381

Google Scholar

[4] H. Ebara, T. Inoue, O. Hashimoto, Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band, Science and Technology of Advanced Materials, 7 (2006) 77–83.

DOI: 10.1016/j.stam.2005.11.019

Google Scholar

[5] D.S. Klygach, M.G. Vakhitov, D.A. Zherebtsov, O.A. Kudryavtsev, N.S. Knyazev, A.I. Malkin, Investigation of electrical parameters of corundum-based material in X band, J. Mater. Sci. Mater. Electron. 28 (18) (2017) 13621–13625.

DOI: 10.1007/s10854-017-7202-1

Google Scholar

[6] Knyazev, N. S., Malkin, A. I. Dielectric permittivity and permeability measurement system. CEUR Workshop Proceedings, 1814 (2017) 45-51.

Google Scholar

[7] Vakhitov, M.G., Klygach, D.S. The influence of parameters of ceramic tile covering on the reflection coefficient, 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 7481561 (2016).

DOI: 10.1109/eucap.2016.7481561

Google Scholar

[8] Kubacki, R., Nowosielski, L., Przesmycki, R. The improved technique of electric and magnetic parameters measurements of powdered materials. Advances in Engineering Software, 42 (11) (2011) 911-916.

DOI: 10.1016/j.advengsoft.2011.07.006

Google Scholar

[9] Sano, S., Tsuzuki, A., Gotou, A. Microwave absorption measurement of titania powders at elevated temperature with circular wave-guide fixture. Proceedings of the 10th International Conference on Microwave and High Frequency Heating, (2005) 12-15.

Google Scholar

[10] Bugaj, J., Bugaj, M. The analysis of the radius impact on the properties of cylindrical antenna with coaxial feed. Progress in Electromagnetics Research Symposium, (2015) 312-316.

Google Scholar

[11] Ghodgaonkar, D.K., Varadan, V.V., Varadan, V.K. Free-Space Measurement of Complex Permittivity and Complex Permeability of Magnetic Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 39(2) (1990) 387-394.

DOI: 10.1109/19.52520

Google Scholar

[12] Nelson, S.O. Density-permittivity relationships for powdered and granular materials. IEEE Transactions on Instrumentation and Measurement, 54(5) (2005) 2033-2040.

DOI: 10.1109/tim.2005.853346

Google Scholar

[13] Pura, J.L., Muñoz, J.M., Alejos, Ó., Hernández-Gómez, P., Torres, C. Measurement at microwave frequencies of the magnetic properties of small quantities of powdered or diluted samples Journal of Applied Physics, 117(17) (2015) 17E133.

DOI: 10.1063/1.4918779

Google Scholar

[14] Dinakaran, P.M., Bhagavannarayana, G., Kalainathan, S. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): A new organic nonlinear optical single crystal, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 97 (2012) 995-1001.

DOI: 10.1016/j.saa.2012.07.128

Google Scholar

[15] Kubacki, R., Nowosielski, L., Przesmycki, R. Technique for the electric and magnetic parameter measurement of powdered materials. WIT Transactions on Modelling and Simulation, 48 (2009) 241-250.

DOI: 10.2495/cmem090221

Google Scholar

[16] Jianzhu, W., Junxue, Z. Effect of the amount of recycled materials on properties and microstructure of the Al2O3-C materials. Advanced Materials Research, 641-642(1) (2013) 321-324.

Google Scholar

[17] Afsar, M.N., Korolev, K.A., Namai, A., Ohkoshi, S.-I. Measurements of complex magnetic permeability of nano-size ε-Al x Fe 2-xO 3 powder materials at microwave and millimeter wavelengths. IEEE Transactions on Magnetics, 48 (11), 6332633 (2012) 2769-2772.

DOI: 10.1109/tmag.2012.2199099

Google Scholar

[18] Afsar, M.N., Li, Z., Korolev, K.A., Namai, A., Ohkoshi, S.-I. Magneto absorption measurements of nano-size-εAlxFe 2-xO3 powder materials at millimeter wavelengths, Journal of Applied Physics, 109(7) (2011) 07E316.

DOI: 10.1063/1.3554250

Google Scholar

[19] L. Tong, H. Zha, Y. Tian. Determining the complex permittivity of powder materials from 1-40 GHz using transmission–line technique, Australia, IEEE International Geoscience and Remote Sensing Symposium, (2013) 1380-1382.

DOI: 10.1109/igarss.2013.6723040

Google Scholar

[20] Klygach, D.S., Vakhitov, M.G., Vinnik, D.A., Bezborodov, A.V., Gudkova, S.A., Zhivulin, V.E., Zherebtsov, D.A., SakthiDharan, C.P., Trukhanov, S.V., Trukhanov, A.V., Starikov, A.Y. Measurement of permittivity and permeability of barium hexaferrite. Journal of Magnetism and Magnetic Materials, 465 (2018) 290-294.

DOI: 10.1016/j.jmmm.2018.05.054

Google Scholar

[21] E.F. Knott, Dielectric constant of plastic foams, IEEE Trans. Antennas Propag. 41(8) (1993) 1167–1171.

DOI: 10.1109/8.244664

Google Scholar