[1]
A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, High-entropy oxides: fundamental aspects and electrochemical properties, Advanced Materials, (2019) 1806236.
DOI: 10.1002/adma.201806236
Google Scholar
[2]
M.R. Chellali, A. Sarkar, S.H. Nandam, S.S. Bhattacharya, B. Breitung, H. Hahn, L. Velasco, On the homogeneity of high entropy oxides: An investigation at the atomic scale, Scripta Materialia, 166 (2019) 58-63.
DOI: 10.1016/j.scriptamat.2019.02.039
Google Scholar
[3]
R. Witte, A. Sarkar, R. Kruk, B. Eggert, R.A. Brand, H. Wende, H. Hahn, High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites, Physical Review Materials, 3(3) (2019) 034406.
DOI: 10.1103/physrevmaterials.3.034406
Google Scholar
[4]
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications, 6 (2015) 84-85.
DOI: 10.1038/ncomms9485
Google Scholar
[5]
D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, Rapid Research Letters, 10(4) (2016) 328-333.
DOI: 10.1002/pssr.201600043
Google Scholar
[6]
A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides, Journal of the European Ceramic Society, 37(2) (2017) 747-754.
DOI: 10.1016/j.jeurceramsoc.2016.09.018
Google Scholar
[7]
D. Berardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, Journal of Materials Chemistry A, 4 (2016) 9536-9541.
DOI: 10.1039/c6ta03249d
Google Scholar
[8]
Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, Journal of Applied Physics, 120(9) (2016).
DOI: 10.1063/1.4962135
Google Scholar
[9]
C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, Journal of the American Ceramic Society, 100(6) (2017) 2732-2738.
DOI: 10.1111/jace.14756
Google Scholar
[10]
D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides, Journal of Alloys and Compounds, 704 (2017) 693-700.
DOI: 10.1016/j.jallcom.2017.02.070
Google Scholar
[11]
A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Djenadic, Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency, Dalton Trans., 36 (2017) 12167-12176.
DOI: 10.1039/c7dt02077e
Google Scholar
[12]
R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, Ch. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Multicomponent equiatomic rare earth oxides, Materials Research Letters, 5 (2017) 102-109.
DOI: 10.1080/21663831.2016.1220433
Google Scholar
[13]
M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518 (2010) 2732-2737.
DOI: 10.1016/j.tsf.2009.10.142
Google Scholar
[14]
Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen, The microstructures and electrical resistivity of (Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films, Advances in Materials Science and Engineering, 6 (2015).
DOI: 10.1155/2015/353140
Google Scholar
[15]
K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, L. An, A five-component entropy-stabilized fluorite oxide, Journal of the European Ceramic Society, 38 (2018) 4161.
DOI: 10.1016/j.jeurceramsoc.2018.04.063
Google Scholar
[16]
S. Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia, 142 (2018) 116-120.
DOI: 10.1016/j.scriptamat.2017.08.040
Google Scholar
[17]
A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilized perovskite type oxides, Journal of the European Ceramic Societ, 38(5) (2018) 2318-2327.
DOI: 10.1016/j.jeurceramsoc.2017.12.058
Google Scholar
[18]
M. Biesuz, S. Fu, J. Dong, A. Jiang, D. Ke, Q. Xu, D. Zhu, M. Bortolotti, M.J. Reece, C. Hu, S. Grasso, High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering, Journal of Asian Ceramic Societies, 7(2) (2019) 127-132.
DOI: 10.1080/21870764.2019.1595931
Google Scholar
[19]
Y. Sharma, B.L. Musico, X. Gao, C. Hua, A.F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, H.N. Lee, M.F. Chisholm, V. Keppens, T.Z. Ward, Single-crystal high entropy perovskite oxide epitaxial films, Physical Review Materials, 2(6) (2018) 060404.
DOI: 10.1103/physrevmaterials.2.060404
Google Scholar
[20]
J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216 (2018) 32-36.
DOI: 10.1016/j.matlet.2017.12.148
Google Scholar
[21]
O. Zaitseva, D. Vinnik, E. Trofimov, The poly-substituted M-type hexaferrite crystals growth, Materials Science Forum, 946 (2019) 186-191.
DOI: 10.4028/www.scientific.net/msf.946.186
Google Scholar