The Creation of Multicomponent Octahedral Crystals with Spinel Structure Using Solid-Phase Synthesis in the Al2O3-BaO-CuO-Fe2O3-Mn2O3-NiO-SrO-TiO2- ZnO and Al2O3-BaO-CuO-Fe2O3-NiO-SrO-TiO2-WO3- ZnO Systems

Article Preview

Abstract:

This paper presents the results of an experimental study of the possibility of high-entropy oxide phases creation using the of solid-phase synthesis method in the Al2O3–BaO–CuO–Fe2O3–Mn2O3–NiO–SrO–TiO2–ZnO and Al2O3–BaO–CuO–Fe2O3–NiO–SrO–TiO2–WO3–ZnO systems. As a result of the study, a microcrystalline octahedral multicomponent phase was found in the crystallized sample. Judging by the composition, this phase has a spinel structure and is characterized (judging by the components concentrations and its ratio) by rather high values of the mixing configurational entropy. It is shown that barium, strontium and tungsten are not included in this phase in appreciable amounts. The obtained results indicate the possibility of synthesizing high-entropic spinels using these Al2O3–CuO–Fe2O3–Mn2O3–NiO–TiO2–ZnO systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-346

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, High-entropy oxides: fundamental aspects and electrochemical properties, Advanced Materials, (2019) 1806236.

DOI: 10.1002/adma.201806236

Google Scholar

[2] M.R. Chellali, A. Sarkar, S.H. Nandam, S.S. Bhattacharya, B. Breitung, H. Hahn, L. Velasco, On the homogeneity of high entropy oxides: An investigation at the atomic scale, Scripta Materialia, 166 (2019) 58-63.

DOI: 10.1016/j.scriptamat.2019.02.039

Google Scholar

[3] R. Witte, A. Sarkar, R. Kruk, B. Eggert, R.A. Brand, H. Wende, H. Hahn, High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites, Physical Review Materials, 3(3) (2019) 034406.

DOI: 10.1103/physrevmaterials.3.034406

Google Scholar

[4] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Entropy-stabilized oxides, Nature Communications, 6 (2015) 84-85.

DOI: 10.1038/ncomms9485

Google Scholar

[5] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Colossal dielectric constant in high entropy oxides, Rapid Research Letters, 10(4) (2016) 328-333.

DOI: 10.1002/pssr.201600043

Google Scholar

[6] A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides, Journal of the European Ceramic Society, 37(2) (2017) 747-754.

DOI: 10.1016/j.jeurceramsoc.2016.09.018

Google Scholar

[7] D. Berardan, S. Franger, A.K. Meena, N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides, Journal of Materials Chemistry A, 4 (2016) 9536-9541.

DOI: 10.1039/c6ta03249d

Google Scholar

[8] Z. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, D.W. Brenner, Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations, Journal of Applied Physics, 120(9) (2016).

DOI: 10.1063/1.4962135

Google Scholar

[9] C.M. Rost, Z. Rak, D.W. Brenner, J.-P. Maria, Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy-stabilized oxide: An EXAFS study, Journal of the American Ceramic Society, 100(6) (2017) 2732-2738.

DOI: 10.1111/jace.14756

Google Scholar

[10] D. Berardan, A.K. Meena, S. Franger, C. Herrero, N. Dragoe, Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides, Journal of Alloys and Compounds, 704 (2017) 693-700.

DOI: 10.1016/j.jallcom.2017.02.070

Google Scholar

[11] A. Sarkar, C. Loho, L. Velasco, T. Thomas, S.S. Bhattacharya, H. Hahn, R.R. Djenadic, Multicomponent equiatomic rare earth oxides with narrow band gap and associated praseodymium multivalency, Dalton Trans., 36 (2017) 12167-12176.

DOI: 10.1039/c7dt02077e

Google Scholar

[12] R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, Ch. Kübel, S.S. Bhattacharya, A.S. Gandhi, H. Hahn, Multicomponent equiatomic rare earth oxides, Materials Research Letters, 5 (2017) 102-109.

DOI: 10.1080/21663831.2016.1220433

Google Scholar

[13] M.-I. Lin, M.-H..Tsai, W.-J. Shen, J.-W. Yeh. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films, Thin Solid Films, 518 (2010) 2732-2737.

DOI: 10.1016/j.tsf.2009.10.142

Google Scholar

[14] Ch.-H. Tsau, Zh.-Y. Hwang, S.-K. Chen, The microstructures and electrical resistivity of (Al,Cr,Ti)FeCoNiOx high-entropy alloy oxide thin films, Advances in Materials Science and Engineering, 6 (2015).

DOI: 10.1155/2015/353140

Google Scholar

[15] K. Chen, X. Pei, L. Tang, H. Cheng, Z. Li, C. Li, X. Zhang, L. An, A five-component entropy-stabilized fluorite oxide, Journal of the European Ceramic Society, 38 (2018) 4161.

DOI: 10.1016/j.jeurceramsoc.2018.04.063

Google Scholar

[16] S. Jiang, T. Hu , J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, A new class of high-entropy perovskite oxides, Scripta Materialia, 142 (2018) 116-120.

DOI: 10.1016/j.scriptamat.2017.08.040

Google Scholar

[17] A. Sarkar, R. Djenadic, D.Wang, Ch. Hein, R. Kautenburger, O. Clemens, H. Hahn, Rare earth and transition metal based entropy stabilized perovskite type oxides, Journal of the European Ceramic Societ, 38(5) (2018) 2318-2327.

DOI: 10.1016/j.jeurceramsoc.2017.12.058

Google Scholar

[18] M. Biesuz, S. Fu, J. Dong, A. Jiang, D. Ke, Q. Xu, D. Zhu, M. Bortolotti, M.J. Reece, C. Hu, S. Grasso, High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering, Journal of Asian Ceramic Societies, 7(2) (2019) 127-132.

DOI: 10.1080/21870764.2019.1595931

Google Scholar

[19] Y. Sharma, B.L. Musico, X. Gao, C. Hua, A.F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, H.N. Lee, M.F. Chisholm, V. Keppens, T.Z. Ward, Single-crystal high entropy perovskite oxide epitaxial films, Physical Review Materials, 2(6) (2018) 060404.

DOI: 10.1103/physrevmaterials.2.060404

Google Scholar

[20] J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, M. Martin, Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure, Materials Letters, 216 (2018) 32-36.

DOI: 10.1016/j.matlet.2017.12.148

Google Scholar

[21] O. Zaitseva, D. Vinnik, E. Trofimov, The poly-substituted M-type hexaferrite crystals growth, Materials Science Forum, 946 (2019) 186-191.

DOI: 10.4028/www.scientific.net/msf.946.186

Google Scholar