Microstructure and Mechanical Properties of the Heat Treated Hy-TUF Steel

Article Preview

Abstract:

A study of the high-strength HY-TUF steel applied for the manufacturing of heavy loaded parts was carried out. The mechanical properties of the austempered HY-TUF steel were compared to the characteristics obtained after the conventional oil quenching and tempering. The upper bainite with low impact strength was formed during the austempering at 400 °C and higher. Conventional oil quenching and tempering at temperature 400...500 °С also led to the embrittlement of the steel under consideration. The best combination of toughness and strength of the HY-TUF steel was achieved after the austempering at the temperature of lower bainite formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-328

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.F. Petrova, S.O. Gevlich, Effect of Thermal Action on Low-Carbon and Silicon-Manganese Steel Microstructure and Properties, Metallurgist. 60 (2016) 499-502.

DOI: 10.1007/s11015-016-0321-8

Google Scholar

[2] N.A. Tereshchenko, I.L. Yakovleva, D.A. Mirzaev, I.V. Buldashev, Features of Isothermal Formation of Carbide-Free Bainite in High-Carbon Manganese-Silicon Steel, Phys. Met. Metal. 119 (2018) 569-575.

DOI: 10.1134/s0031918x18060145

Google Scholar

[3] N.G. Pokrovskaya, A.F. Petrakov, A.B. Shal'kevich, Modern High-Strength Structural Steels for Aircraft Engineering, Met. Sci. Heat Treat. 44 (2002) 520-523.

Google Scholar

[4] K. Sugimoto, T. Hojo, J. Kobayashi, Critical assessment 29: TRIP-aided bainitic ferrite steels, Mater. Sci. Tech. 33 (2017) 2005-2009.

DOI: 10.1080/02670836.2017.1356014

Google Scholar

[5] H.N. El-Din, E.A. Showaib, N. Zaafarani, H. Refaiy, Structure-properties relationship in TRIP type bainitic ferrite steel austempered at different temperatures, Int. J. Mech. Mater. Eng. 12 (2017) 1-9.

DOI: 10.1186/s40712-017-0071-9

Google Scholar

[6] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Quenching and partitioning martensite – A novel steel heat treatment, Mater. Sci. Eng. A. 438-440 (2006) 25-34.

DOI: 10.1016/j.msea.2006.02.133

Google Scholar

[7] J.G. Speer, E. De Moor, A.J. Clarke, Critical Assessment 7: Quenching andpartitioning, Mater. Sci. Tech. 31 (2015) 3-9.

Google Scholar

[8] E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Microstructure-mechanical properties relationships for quenchingand partitioning (Q&P) processed steel, ActaMater. 113 (2016) 124-139.

DOI: 10.1016/j.actamat.2016.04.048

Google Scholar

[9] E. Billur, T. Altan, Three generations of advanced high-strength steels for automotive applications. Part III. The third generation, Stamp. J. 03-04 (2014) 15-16.

Google Scholar

[10] M.V. Maisuradze, M.A. Ryzhkov, Yu.V. Yudin, A.A. Kuklina, Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions, Met. Sci. Heat Treat. 59 (2017) 486-490.

DOI: 10.1007/s11041-017-0176-z

Google Scholar

[11] M.J. Leap, J. Rankin, J. Harrison, Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft, Int. J. Fatig. 33 (2011) 788-799.

DOI: 10.1016/j.ijfatigue.2010.12.016

Google Scholar

[12] A. Zare, S.R. Hosseini, Influence of soaking time in deep cryogenic treatment on the microstructure and mechanical properties of low-alloy medium-carbon HY-TUF steel, Int. J. Min. Metal. Mater. 23 (2016) 658-666.

DOI: 10.1007/s12613-016-1278-0

Google Scholar

[13] ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, (2016).

Google Scholar

[14] ASTM E23-16b, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, (2016).

Google Scholar

[15] S. Xia, F. Zhang, Z. Yang, Microstructure and mechanical properties of 18Mn3Si2CrMo steel subjected to austempering at different temperatures below Ms, Mat. Sci. Eng. A. 724 (2018) 103-111.

DOI: 10.1016/j.msea.2018.03.067

Google Scholar

[16] A. Navarro-López, J. Hidalgo, J. Sietsma, M.J. Santofimia, Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature, Mater. Char. 128 (2017) 248-256.

DOI: 10.1016/j.matchar.2017.04.007

Google Scholar

[17] M.V. Maisuradze, Yu.V. Yudin, A.A. Kuklina, A Novel Approach for Analytical Description of the Isothermal Bainite Transformation in Alloyed Steels, Mater. Perf. Char. 7 (2018) 1-10.

DOI: 10.1520/mpc20170168

Google Scholar

[18] K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels, ISIJ Int. 32 (1992) 1311-1318.

DOI: 10.2355/isijinternational.32.1311

Google Scholar

[19] M. Zhang, F. Zhu, D. Zheng, Mechanical Properties and Retained Austenite Transformation Mechanism of TRIP-Aided Polygonal Ferrite Matrix Seamless Steel Tube, J. Iron Steel Res. Int. 18 (2011) 73-78.

DOI: 10.1016/s1006-706x(11)60107-6

Google Scholar

[20] H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, Elsevier, (2017).

Google Scholar