[1]
S.P. Golovanova, A.P. Zubekhin and O.V. Likhota, Bleaching and intensification of sintering of ceramics based on iron-bearing clays, Glass Ceram. 61 (2004) 402-405.
DOI: 10.1007/s10717-005-0012-6
Google Scholar
[2]
I. V. Pishch, G. N. Maslennikova, N. A. Gvozdeva et al, Methods of dyeing ceramic brick, Glass Ceram. 64 (2007) 270-273.
DOI: 10.1007/s10717-007-0067-7
Google Scholar
[3]
I. A. Al'perovich, G. T. Osipov and V. S. Svit'ko, Light-tone facing brick based on Cambrian clays, Stroit mater. 11 (1995) 6-8.
Google Scholar
[4]
V. Valanchene, N. Mandeikite and E. Urusova, Intensity of coloring in ceramics with glauconite additives, Glass Ceram. 63 (2006) 92-94.
DOI: 10.1007/s10717-006-0046-4
Google Scholar
[5]
A. I. Nestertsov, Lightening of red-burning clays in the production of ceramic materials, Glass Ceram. 66 (2009) 253-254.
DOI: 10.1007/s10717-009-9176-9
Google Scholar
[6]
G. T. Adylov, G. S. Menosmanova, T. T. Riskiev et al, Prospects for expanding the raw materials resources for ceramic production, Glass Ceram. 67 (2010) 63-65.
DOI: 10.1007/s10717-010-9231-6
Google Scholar
[7]
N. G. Gurov, L. V. Kotlyarova and N. N. Ivanov, Production of light-tone ceramic bricks from red-burning clay raw material, Stroit mater. 9 (2005) 58-59.
Google Scholar
[8]
N. D. Yatsenko and V. P. Rat'kova, Regularities of tinting ceramics based on low-melting clays, Glass Ceram. 63 (2006) 265-266.
DOI: 10.1007/s10717-006-0095-8
Google Scholar
[9]
A. Stolboushkin, D. Akst, O. Fomina and A. Ivanov, Structure and properties of ceramic brick colored by manganese-containing wastes, MATEC Web of Conferences. 143 (2018) 02009.
DOI: 10.1051/matecconf/201814302009
Google Scholar
[10]
F. de L. Sartor, L. F. Spricigo, D. F. Niero et al, Effect of the addition of the waste generated from the feldspar mining on the obtainment of ceramic brick, Materials Science Forum. 930 (2018) 164-169.
DOI: 10.4028/www.scientific.net/msf.930.164
Google Scholar
[11]
J. Muliawan and S. Astutiningsih, Preparation and characterization of phosphate-sludge kaolin mixture for ceramics bricks, International Journal of Technology. 9 (2018) 317.
DOI: 10.14716/ijtech.v9i2.1119
Google Scholar
[12]
L. C. S. Herek, C. E. Hori, M. H. M. Reis et al, Characterization of ceramic bricks incorporated with textile laundry sludge, Ceram Int. 38 (2012) 951-959.
DOI: 10.1016/j.ceramint.2011.08.015
Google Scholar
[13]
D. Eliche-Quesada, C. Martínez-García, M. L. Martínez-Cartas et al, Characterization of ceramic bricks incorporated with textile laundry sludge, Applied Clay Science. 52 (2011) 270-276.
DOI: 10.1016/j.clay.2011.03.003
Google Scholar
[14]
R. P. S. Dutra, U. U. Gomes, R. M. do Nascimento et al, Use of Sewage Sludge in the Production of Light-Weighted Ceramic Bricks, Materials Science Forum. 514-516 (2006) 1706-1710.
DOI: 10.4028/www.scientific.net/msf.514-516.1706
Google Scholar
[15]
M. K. Imangazin, E. S. Abdrakhimova, V. Z. Abdrakhimov et al, Innovative directions for utilization of ferrous metallurgy waste in ceramic brick production, Metallurgist. 61 (2017) 1-5.
DOI: 10.1007/s11015-017-0462-4
Google Scholar
[16]
Yan-bing ZONG Wen-hui CHEN Yi-xuan LIU et al, Influence of slag particle size on performance of ceramic bricks containing red clay and steel-making slag, Journal Ceramic Society Japan. 127 (2019) 105-110.
DOI: 10.2109/jcersj2.18137
Google Scholar
[17]
M. B. Sedel'nikova and V. M. Pogrebenkov, Production of Ceramic Pigments with Wollastonite and Diopside Structures Using Nepheline Sludge, Glass Ceram. 64 (2007) 363-365.
DOI: 10.1007/s10717-007-0091-7
Google Scholar
[18]
I. Starostina, М. Simonov, А. Volodchenko et al, The usage of iron-containing sludge wastes in ceramic bricks production, IOP Conf. Series: Materials Science and Engineering. 365 (2018) 032066.
DOI: 10.1088/1757-899x/365/3/032066
Google Scholar
[19]
A. Y. Stolboushkin, D. V. Akst, Investigation of the Decorative Ceramics of Matrix Structure from Iron-Ore Waste with Vanadium Component Addition, Materials Science Forum. 931 (2018) 520-525.
DOI: 10.4028/www.scientific.net/msf.931.520
Google Scholar
[20]
V. A. Guryeva, A. V. Doroshin and V. V. Dubineckij, Sludge of the Fuel-Energy and Oil-Producing Complex in the Production of Wall Ceramic Products, Materials Science Forum. 945 (2019) 1036-1042.
DOI: 10.4028/www.scientific.net/msf.945.1036
Google Scholar
[21]
R. V. Manukyan, N. S. Davydova, Use of waste in the ceramics industry, Glass Ceram. 53 (1996) 247-248.
DOI: 10.1007/bf01213781
Google Scholar
[22]
Swaminathan Dhanapandian, Balasubramani Gnanavel, Thirunavukkarasu Ramkumar, Utilization of granite and marble sawing powder wastes as brick materials, Carpathian Journal of Earth and Environmental Sciences, 4 (2009) 147-160.
Google Scholar
[23]
Niyazi Ugur Kockal, Properties and microstructure of porous ceramic bodies containing fly ash, J. of building physics. 35 (2011) 338-352.
DOI: 10.1177/1744259111429781
Google Scholar
[24]
I. G. Dovzhenko, Light-tone ceramic facing brick manufacture using ferrous-metallurgy by-products, Glass Ceram. 68 (2011) 247-249.
DOI: 10.1007/s10717-011-9364-2
Google Scholar
[25]
I. A. Pavlova, I. D. Kashcheev, K. G. Zemlyanoi et al, Tyumen Clays in the Production of Building Ceramic, Glass Ceram. 72 (2016) 341-344.
DOI: 10.1007/s10717-016-9787-x
Google Scholar
[26]
GOST 530–2012: Ceramic brick and stone. General specifications [in Russian], replaces GOST 530–2007, introduced July 01, 2013: Izd. Standartov, Moscow (2013) (international standard).
Google Scholar
[27]
A. S. Berkman, I. G. Mel'nikova, The structure and cold resisting property of wall materials [in Russian], Gosstroyizdat, (1962).
Google Scholar
[28]
GOST 2409–95: Refractories. Method for determination of bulk density, apparent and true porosity, water absorption [in Russian], replaces GOST 2409–80, introduced January 01, 1997: Izd. Standartov, Moscow (1995) (international standard).
Google Scholar
[29]
N. A. Toropov et al, Phase diagrams of silicate systems [in Russian], Nauka, Leningrad, (1969).
Google Scholar
[30]
Information on https://www.rapidtables.com/web/color/RGB_Color.html.
Google Scholar