The Effect of Manganese-Containing Pigment on the Strength of Ceramic Bricks

Article Preview

Abstract:

The paper presents the results of investigation concerning using a high-temperature pigment based on synthetic tri-manganese tetra-oxide (Mn3O4) in the production of volume-colored bricks using red-burning clay. It is established that the introduction of a pigment in the amount of 2–4% results in a rich dark brown brick. At the same time, the intensity of the color increases with an increase in the pigment concentration from 2 to 4% and a brick firing temperature from 800 to 950°C. It has been established that with the introduction of pigment the strength of the obtained brick samples decreases, as well as the frost resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-334

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Golovanova, A.P. Zubekhin and O.V. Likhota, Bleaching and intensification of sintering of ceramics based on iron-bearing clays, Glass Ceram. 61 (2004) 402-405.

DOI: 10.1007/s10717-005-0012-6

Google Scholar

[2] I. V. Pishch, G. N. Maslennikova, N. A. Gvozdeva et al, Methods of dyeing ceramic brick, Glass Ceram. 64 (2007) 270-273.

DOI: 10.1007/s10717-007-0067-7

Google Scholar

[3] I. A. Al'perovich, G. T. Osipov and V. S. Svit'ko, Light-tone facing brick based on Cambrian clays, Stroit mater. 11 (1995) 6-8.

Google Scholar

[4] V. Valanchene, N. Mandeikite and E. Urusova, Intensity of coloring in ceramics with glauconite additives, Glass Ceram. 63 (2006) 92-94.

DOI: 10.1007/s10717-006-0046-4

Google Scholar

[5] A. I. Nestertsov, Lightening of red-burning clays in the production of ceramic materials, Glass Ceram. 66 (2009) 253-254.

DOI: 10.1007/s10717-009-9176-9

Google Scholar

[6] G. T. Adylov, G. S. Menosmanova, T. T. Riskiev et al, Prospects for expanding the raw materials resources for ceramic production, Glass Ceram. 67 (2010) 63-65.

DOI: 10.1007/s10717-010-9231-6

Google Scholar

[7] N. G. Gurov, L. V. Kotlyarova and N. N. Ivanov, Production of light-tone ceramic bricks from red-burning clay raw material, Stroit mater. 9 (2005) 58-59.

Google Scholar

[8] N. D. Yatsenko and V. P. Rat'kova, Regularities of tinting ceramics based on low-melting clays, Glass Ceram. 63 (2006) 265-266.

DOI: 10.1007/s10717-006-0095-8

Google Scholar

[9] A. Stolboushkin, D. Akst, O. Fomina and A. Ivanov, Structure and properties of ceramic brick colored by manganese-containing wastes, MATEC Web of Conferences. 143 (2018) 02009.

DOI: 10.1051/matecconf/201814302009

Google Scholar

[10] F. de L. Sartor, L. F. Spricigo, D. F. Niero et al, Effect of the addition of the waste generated from the feldspar mining on the obtainment of ceramic brick, Materials Science Forum. 930 (2018) 164-169.

DOI: 10.4028/www.scientific.net/msf.930.164

Google Scholar

[11] J. Muliawan and S. Astutiningsih, Preparation and characterization of phosphate-sludge kaolin mixture for ceramics bricks, International Journal of Technology. 9 (2018) 317.

DOI: 10.14716/ijtech.v9i2.1119

Google Scholar

[12] L. C. S. Herek, C. E. Hori, M. H. M. Reis et al, Characterization of ceramic bricks incorporated with textile laundry sludge, Ceram Int. 38 (2012) 951-959.

DOI: 10.1016/j.ceramint.2011.08.015

Google Scholar

[13] D. Eliche-Quesada, C. Martínez-García, M. L. Martínez-Cartas et al, Characterization of ceramic bricks incorporated with textile laundry sludge, Applied Clay Science. 52 (2011) 270-276.

DOI: 10.1016/j.clay.2011.03.003

Google Scholar

[14] R. P. S. Dutra, U. U. Gomes, R. M. do Nascimento et al, Use of Sewage Sludge in the Production of Light-Weighted Ceramic Bricks, Materials Science Forum. 514-516 (2006) 1706-1710.

DOI: 10.4028/www.scientific.net/msf.514-516.1706

Google Scholar

[15] M. K. Imangazin, E. S. Abdrakhimova, V. Z. Abdrakhimov et al, Innovative directions for utilization of ferrous metallurgy waste in ceramic brick production, Metallurgist. 61 (2017) 1-5.

DOI: 10.1007/s11015-017-0462-4

Google Scholar

[16] Yan-bing ZONG Wen-hui CHEN Yi-xuan LIU et al, Influence of slag particle size on performance of ceramic bricks containing red clay and steel-making slag, Journal Ceramic Society Japan. 127 (2019) 105-110.

DOI: 10.2109/jcersj2.18137

Google Scholar

[17] M. B. Sedel'nikova and V. M. Pogrebenkov, Production of Ceramic Pigments with Wollastonite and Diopside Structures Using Nepheline Sludge, Glass Ceram. 64 (2007) 363-365.

DOI: 10.1007/s10717-007-0091-7

Google Scholar

[18] I. Starostina, М. Simonov, А. Volodchenko et al, The usage of iron-containing sludge wastes in ceramic bricks production, IOP Conf. Series: Materials Science and Engineering. 365 (2018) 032066.

DOI: 10.1088/1757-899x/365/3/032066

Google Scholar

[19] A. Y. Stolboushkin, D. V. Akst, Investigation of the Decorative Ceramics of Matrix Structure from Iron-Ore Waste with Vanadium Component Addition, Materials Science Forum. 931 (2018) 520-525.

DOI: 10.4028/www.scientific.net/msf.931.520

Google Scholar

[20] V. A. Guryeva, A. V. Doroshin and V. V. Dubineckij, Sludge of the Fuel-Energy and Oil-Producing Complex in the Production of Wall Ceramic Products, Materials Science Forum. 945 (2019) 1036-1042.

DOI: 10.4028/www.scientific.net/msf.945.1036

Google Scholar

[21] R. V. Manukyan, N. S. Davydova, Use of waste in the ceramics industry, Glass Ceram. 53 (1996) 247-248.

DOI: 10.1007/bf01213781

Google Scholar

[22] Swaminathan Dhanapandian, Balasubramani Gnanavel, Thirunavukkarasu Ramkumar, Utilization of granite and marble sawing powder wastes as brick materials, Carpathian Journal of Earth and Environmental Sciences, 4 (2009) 147-160.

Google Scholar

[23] Niyazi Ugur Kockal, Properties and microstructure of porous ceramic bodies containing fly ash, J. of building physics. 35 (2011) 338-352.

DOI: 10.1177/1744259111429781

Google Scholar

[24] I. G. Dovzhenko, Light-tone ceramic facing brick manufacture using ferrous-metallurgy by-products, Glass Ceram. 68 (2011) 247-249.

DOI: 10.1007/s10717-011-9364-2

Google Scholar

[25] I. A. Pavlova, I. D. Kashcheev, K. G. Zemlyanoi et al, Tyumen Clays in the Production of Building Ceramic, Glass Ceram. 72 (2016) 341-344.

DOI: 10.1007/s10717-016-9787-x

Google Scholar

[26] GOST 530–2012: Ceramic brick and stone. General specifications [in Russian], replaces GOST 530–2007, introduced July 01, 2013: Izd. Standartov, Moscow (2013) (international standard).

Google Scholar

[27] A. S. Berkman, I. G. Mel'nikova, The structure and cold resisting property of wall materials [in Russian], Gosstroyizdat, (1962).

Google Scholar

[28] GOST 2409–95: Refractories. Method for determination of bulk density, apparent and true porosity, water absorption [in Russian], replaces GOST 2409–80, introduced January 01, 1997: Izd. Standartov, Moscow (1995) (international standard).

Google Scholar

[29] N. A. Toropov et al, Phase diagrams of silicate systems [in Russian], Nauka, Leningrad, (1969).

Google Scholar

[30] Information on https://www.rapidtables.com/web/color/RGB_Color.html.

Google Scholar