[1]
C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, (1995).
Google Scholar
[2]
A. Karimi and J. L. Martin, Cavitation erosion of materials, Int. Met. Rev. 31 (1986) 1-26.
Google Scholar
[3]
C.T. Kwok, H.C. Man, F.T. Cheng, Cavitation erosion and damage mechanisms of alloys with duplex structures, Materials Science and Engineering A242 (1998) 108–120.
DOI: 10.1016/s0921-5093(97)00514-5
Google Scholar
[4]
S. M. Ahnted, K. Hokkirigawa, Y. Ito, R. Oba, Scanning electron microscopy observation on the incubation period of vibratory cavitation erosion, Wear 142 (1991) 303–314.
DOI: 10.1016/0043-1648(91)90171-p
Google Scholar
[5]
S-H Yang, S-Y Jaw, K-C Yeh, Single cavitation bubble generation and observation of the bubble collapse flow induced by a pressure wave, Exp Fluids 47 (2009) 343–355.
DOI: 10.1007/s00348-009-0670-1
Google Scholar
[6]
E.A. Brujan, T. Ikedab, Y. Matsumoto, Shock wave emission from a cloud of bubbles, Soft Matter 8 (2012) 5777–5783.
DOI: 10.1039/c2sm25379h
Google Scholar
[7]
W. Lauterborn and H. Bolle, Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary, J. Fluid Mech. 72 (1975) 391–399.
DOI: 10.1017/s0022112075003448
Google Scholar
[8]
M.S. Plesset and R.B. Chapman, Collapse of an initially spherical Vapor Cavity in the Neighborhood of a solid Boundary, J. Fluid Mech. 47 (1971) 283–290.
DOI: 10.1017/s0022112071001058
Google Scholar
[9]
M. Dular, B. Bachert, B. Stoffel, B. Širok, Relationship between cavitation structures and cavitation damage, Wear 257 (2004) 1176–1184.
DOI: 10.1016/j.wear.2004.08.004
Google Scholar
[10]
J. K. Choi, A. Jayaprakash, G. L. Chahine, Scaling of cavitation erosion progression with cavitation intensity and cavitation source, Wear 278–279 (2012) 53–61.
DOI: 10.1016/j.wear.2012.01.008
Google Scholar
[11]
B. Vyas and I.L.H. Hansson, The cavitation erosion - corrosion of stainless steel, Corrosion Sci. 30 (1990) 761–770.
DOI: 10.1016/0010-938x(90)90001-l
Google Scholar
[12]
Y. Zheng, S. Luo, W. Ke, Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions, Wear 262 (2007) 1308–1314.
DOI: 10.1016/j.wear.2007.01.006
Google Scholar
[13]
J. Basumatary, M. Nie, R.J.K. Wood, The Synergistic Effects of Cavitation Erosion–Corrosion in Ship Propeller Materials, J Bio Tribo Corros (2015) 1–12.
DOI: 10.1007/s40735-015-0012-1
Google Scholar
[14]
ASTM, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, G 32 - 10, (2011) 1–19.
Google Scholar
[15]
H.L. Alwan, Yu.S. Korobov, N.N. Soboleva, N.V. Lezhnin, A.V. Makarov, E.P. Nikolaeva, and M.S. Deviatiarov, Cavitation erosion-corrosion resistance of deposited austenitic stainless steel/E308L-17 electrode, International conference on Industrial Engineering, Sochi, Russian Federation 25-29 March 2019, Journal Solid State Phenomena, in press.
DOI: 10.4028/www.scientific.net/ssp.299.908
Google Scholar
[16]
M. Duraiselvam, R. Galun, V. Wesling, B.L. Mordike, R. Reiter, J. Oligmüller, Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement, Surf. Coatings Technol.201 (2006) 1289–1295.
DOI: 10.1016/j.surfcoat.2006.01.054
Google Scholar
[17]
K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels, Materials Science and Engineering R 65 (2009) 39–104.
DOI: 10.1016/j.mser.2009.03.001
Google Scholar
[18]
J. Moon, H-Y Ha, S-J Park, T-H Lee, J.H. Jang, C-H Lee, H.N. Han, H-U Hong, Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10.5Al-1.1C lightweight steels, Journal of Alloys and Compounds 775 (2019) 1136–1146.
DOI: 10.1016/j.jallcom.2018.10.253
Google Scholar