[1]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.
Google Scholar
[2]
R.Z. Valiev, A.P. Zhilyaev, T.G Langdon, Bulk Nanostructured Materials: Fundamentals and Applications. TMS, Wiley, Hoboken, New Jersey, USA, (2014).
Google Scholar
[3]
R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater., 3 (2004) 511-516.
DOI: 10.1038/nmat1180
Google Scholar
[4]
M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, J. Mater Sci., 42 (2007) 1782-1796.
DOI: 10.1007/s10853-006-0954-2
Google Scholar
[5]
X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1-12.
DOI: 10.1016/j.msea.2012.01.080
Google Scholar
[6]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater., 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[7]
R.Z. Valiev, R.Sh. Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78 (1994) 666-670.
Google Scholar
[8]
Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Mater. 44 (2001) 873-878.
DOI: 10.1016/s1359-6462(00)00699-0
Google Scholar
[9]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, Mossbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium, Bull. RAS: Physics, 71 (2007) 1244-1248.
DOI: 10.3103/s1062873807090110
Google Scholar
[10]
V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb, Defect and Diffusion Forum. 263 (2007) 69-74.
DOI: 10.4028/www.scientific.net/ddf.263.69
Google Scholar
[11]
G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski. Plasticity and grain boundary diffusion at small grain sizes, Adv. Eng. Mater. 12 (2010) 758-764.
DOI: 10.1002/adem.200900333
Google Scholar
[12]
A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.
DOI: 10.1134/s0031918x08100128
Google Scholar
[13]
T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, Proc. Conf. Nanomaterials by Severe Plastic Deformation-NANOSPD2,, Vienna, Austria. (2002) 447-452.
DOI: 10.1002/3527602461.ch8b
Google Scholar
[14]
R. Pippan, S. Scheriau, A. Taylor, et al., Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.
DOI: 10.1146/annurev-matsci-070909-104445
Google Scholar
[15]
V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.
DOI: 10.4028/www.scientific.net/ddf.297-301.1312
Google Scholar
[16]
A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.
DOI: 10.3103/s1062873814090299
Google Scholar
[17]
V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures, Mater. Sci. Eng. A. 528 (2011) 1491–1496.
DOI: 10.1016/j.msea.2010.10.052
Google Scholar
[18]
V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.
DOI: 10.1134/s0031918x1203009x
Google Scholar
[19]
V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal stability of nickel structure obtained by high pressure torsion in liquid nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.
DOI: 10.1134/s0031918x14070060
Google Scholar
[20]
E.N. Popova, I.L. Deryagina, E.P. Romanov, E.A. Dergunova, A.E. Vorobyova, S.M. Balaev, Solid-State diffusion formation of nanocrystalline Nb3Sn layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires, J. of Nano Research. 16 (2011) 69-75.
DOI: 10.4028/www.scientific.net/jnanor.16.69
Google Scholar
[21]
I.L. Deryagina, E.N. Popova, E.P. Romanov, E.A. Dergunova, A.E. Vorob'eva, S.M. Balaev. Evolution of the Nanocrystalline Structure of Nb3Sn Superconducting Layers upon Two-Stage Annealing of Nb/Cu–Sn Composites Alloyed with Titanium, Phys. Met. Metallogr. 113 (2012) 391-405.
DOI: 10.1134/s0031918x12040047
Google Scholar
[22]
Popova E.N., Deryagina I.L., Valova-Zaharevskaya E.G. The Nb3Sn layers formation at diffusion annealing of Ti-doped multifilamentary Nb/Cu-Sn composites, Cryogenics, 63 (2014) 63-68.
DOI: 10.1016/j.cryogenics.2014.07.007
Google Scholar
[23]
I.L. Deryagina, E.N. Popova, E.I. Patrakov, E.G. Valova-Zaharevskaya. Effect of Nb3Sn layer structure and morphology on critical current density of multifilamentary superconductors, J. Magn. Magn. Mater. 440 (2017) 119-122.
DOI: 10.1016/j.jmmm.2016.12.091
Google Scholar
[24]
A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis of Histograms of Grain Size Distribution in Nanostructured Materials Processed by Severe Plastic Deformation, Solid State Phenomena. 284 (2018). 431-435.
DOI: 10.4028/www.scientific.net/ssp.284.431
Google Scholar
[25]
A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion, Solid State Phenomena. 284 (2018). 425-430.
DOI: 10.4028/www.scientific.net/ssp.284.425
Google Scholar