Statistical Analysis of Grain Structures Formed by Solid-State Diffusion at Annealing

Article Preview

Abstract:

Grain structures of Nb3Sn layers, formed by solid-state diffusion, have been analyzed using statistical methods. To determine parameters of grain structure from grain size distributions, a statistical model with combination of lognormal and standard distributions was used. Histograms of grain size distributions in Nb3Sn layers, formed by solid-state diffusion in different composites, appeared to have only one group of crystallites after various regimes of heat treatment. It has been established that there is strong correlation between average grain sizes and the standard deviations, and this statement is also fulfilled at the grain structure evolution under additional annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

301-305

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater., 48 (2000) 1-29.

Google Scholar

[2] R.Z. Valiev, A.P. Zhilyaev, T.G Langdon, Bulk Nanostructured Materials: Fundamentals and Applications. TMS, Wiley, Hoboken, New Jersey, USA, (2014).

Google Scholar

[3] R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater., 3 (2004) 511-516.

DOI: 10.1038/nmat1180

Google Scholar

[4] M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, J. Mater Sci., 42 (2007) 1782-1796.

DOI: 10.1007/s10853-006-0954-2

Google Scholar

[5] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1-12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar

[6] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater., 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[7] R.Z. Valiev, R.Sh. Musalimov, High-resolution transmission electron microscopy of nanocrystalline materials, Phys. Met. Metallogr. 78 (1994) 666-670.

Google Scholar

[8] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev, Grain boundary diffusion characteristics of nanostructured nickel, Scripta Mater. 44 (2001) 873-878.

DOI: 10.1016/s1359-6462(00)00699-0

Google Scholar

[9] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, Mossbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium, Bull. RAS: Physics, 71 (2007) 1244-1248.

DOI: 10.3103/s1062873807090110

Google Scholar

[10] V.V. Popov, V.N. Kaigorodov, E.N. Popova, A.V. Stolbovsky, NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb, Defect and Diffusion Forum. 263 (2007) 69-74.

DOI: 10.4028/www.scientific.net/ddf.263.69

Google Scholar

[11] G. Wilde, J. Ribbe, G. Reglitz, M. Wegner, H. Rösner, Y. Estrin, M. Zehetbauer, D. Setman, S. Divinski. Plasticity and grain boundary diffusion at small grain sizes, Adv. Eng. Mater. 12 (2010) 758-764.

DOI: 10.1002/adem.200900333

Google Scholar

[12] A.V. Korznikov, A.N. Tyumentsev, I.A. Ditenberg, On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106 (4) (2008) 418-423.

DOI: 10.1134/s0031918x08100128

Google Scholar

[13] T. Hebesberger, A. Vorhauer, H.P. Stuwe, R. Pippan, Proc. Conf. Nanomaterials by Severe Plastic Deformation-NANOSPD2,, Vienna, Austria. (2002) 447-452.

DOI: 10.1002/3527602461.ch8b

Google Scholar

[14] R. Pippan, S. Scheriau, A. Taylor, et al., Saturation of fragmentation during severe plastic deformation, Annu. Rev. Mater. Res. 40 (2010) 319-343.

DOI: 10.1146/annurev-matsci-070909-104445

Google Scholar

[15] V.V. Popov, A.V. Stolbovkiy, E.N. Popova, V.P. Pilyugin, Structure and Thermal Stability of Cu after Severe Plastic Deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[16] A.V. Stolbovsky, V.V. Popov, E.N. Popova, V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.

DOI: 10.3103/s1062873814090299

Google Scholar

[17] V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin, Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures, Mater. Sci. Eng. A. 528 (2011) 1491–1496.

DOI: 10.1016/j.msea.2010.10.052

Google Scholar

[18] V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin, N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.

DOI: 10.1134/s0031918x1203009x

Google Scholar

[19] V.V. Popov, E.N. Popova, D.D. Kuznetsov, A.V. Stolbovskii, V.P. Pilyugin, Thermal stability of nickel structure obtained by high pressure torsion in liquid nitrogen, Phys. Met. Metallogr. 115 (2014) 682-691.

DOI: 10.1134/s0031918x14070060

Google Scholar

[20] E.N. Popova, I.L. Deryagina, E.P. Romanov, E.A. Dergunova, A.E. Vorobyova, S.M. Balaev, Solid-State diffusion formation of nanocrystalline Nb3Sn layers at two-staged annealing of multifilamentary Nb/Cu-Sn wires, J. of Nano Research. 16 (2011) 69-75.

DOI: 10.4028/www.scientific.net/jnanor.16.69

Google Scholar

[21] I.L. Deryagina, E.N. Popova, E.P. Romanov, E.A. Dergunova, A.E. Vorob'eva, S.M. Balaev. Evolution of the Nanocrystalline Structure of Nb3Sn Superconducting Layers upon Two-Stage Annealing of Nb/Cu–Sn Composites Alloyed with Titanium, Phys. Met. Metallogr. 113 (2012) 391-405.

DOI: 10.1134/s0031918x12040047

Google Scholar

[22] Popova E.N., Deryagina I.L., Valova-Zaharevskaya E.G. The Nb3Sn layers formation at diffusion annealing of Ti-doped multifilamentary Nb/Cu-Sn composites, Cryogenics, 63 (2014) 63-68.

DOI: 10.1016/j.cryogenics.2014.07.007

Google Scholar

[23] I.L. Deryagina, E.N. Popova, E.I. Patrakov, E.G. Valova-Zaharevskaya. Effect of Nb3Sn layer structure and morphology on critical current density of multifilamentary superconductors, J. Magn. Magn. Mater. 440 (2017) 119-122.

DOI: 10.1016/j.jmmm.2016.12.091

Google Scholar

[24] A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis of Histograms of Grain Size Distribution in Nanostructured Materials Processed by Severe Plastic Deformation, Solid State Phenomena. 284 (2018). 431-435.

DOI: 10.4028/www.scientific.net/ssp.284.431

Google Scholar

[25] A.V. Stolbovsky, E.P. Farafontova, Statistical Analysis Method of the Grain Structure of Nanostructured Single Phase Metal Materials Processed by High-Pressure Torsion, Solid State Phenomena. 284 (2018). 425-430.

DOI: 10.4028/www.scientific.net/ssp.284.425

Google Scholar