[1]
Y.-H. Yang, M.-Q. Wang, J.-C. Chen, H. Dong, Microstructure and Mechanical Properties of Gear Steels After High Temperature Carburization, J. Iron Steel Res. Int. 20 (2013) 140–145.
DOI: 10.1016/s1006-706x(13)60227-7
Google Scholar
[2]
A. S. Ivanov, S. K. Greben'kov, M. V. Bogdanova, Optimization of the Process of Carburizing and Heat Treatment of Low-Carbon Martensitic Steels, Met. Sci. Heat Treat. 58 (2016) 116–119.
DOI: 10.1007/s11041-016-9973-z
Google Scholar
[3]
A.A. Walvekar, F. Sadeghi, Rolling contact fatigue of case carburized steels, Int. J. Fatig. 95 (2017) 264–281.
DOI: 10.1016/j.ijfatigue.2016.11.003
Google Scholar
[4]
M. Yu. Semenov, Computational Evaluation of Cyclic Strength of Carburized Gears from Heat-Resistant Steels, Met. Sci. Heat Treat. 56 (2014) 428–433.
DOI: 10.1007/s11041-014-9776-z
Google Scholar
[5]
N.R. Paulson, Z. Golmohammadi, A.A. Walvekar, F. Sadeghi, K. Mistry, Rolling contact fatigue in refurbished case carburized bearings, Trib. Int. 115 (2017) 348–364.
DOI: 10.1016/j.triboint.2017.05.026
Google Scholar
[6]
B. Jo, S. Sharifimehr, Y. Shim, A. Fatemi, Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states, Int. J. Fatig. 100 (2017) 454–465.
DOI: 10.1016/j.ijfatigue.2016.12.023
Google Scholar
[7]
B. Edenhofer, D. Joritz, M. Rink, K. Voges, Carburizing of steels; in Thermochemical Surface Engineering of Steels, Elsevier Ltd., (2015).
DOI: 10.1533/9780857096524.3.485
Google Scholar
[8]
V. V. Chekanskii, Gas carburizing in an atmosphere of activated endogas without adding excess methane to the furnace, Met. Sci. Heat Treat. 27 (1985) 875–881.
DOI: 10.1007/bf00700093
Google Scholar
[9]
V. Ya. Syropyatov, Automated modular complex MPPA-SSI12 – a breakthrough technology for liquid, cementation, Metallurgist. 54 (2011) 717–724.
DOI: 10.1007/s11015-011-9364-z
Google Scholar
[10]
C. A. Stickels, C. M. Mack, M. Brachaczek, Gas carburizing of steel with furnace atmospheres formed In Situ from propane and air: Part I. The effect of air-propane ratio on furnace atmosphere composition and the amount of carburizing, Met. Trans. B. 11 (1980) 471–479.
DOI: 10.1007/bf02676891
Google Scholar
[11]
C. A. Stickels, C. M. Mack, Gas carburizing of steel with furnace atmospheres formed In Situ from propane and air: Part II. Analysis of the characteristics of gas flow in a batch-type sealed quench furnace, Met. Trans. B. 11 (1980) 481–484.
DOI: 10.1007/bf02676892
Google Scholar
[12]
C. A. Stickels, C. M. Mack, J. A. Pieprzak, Gas carburizing of steel with furnace atmospheres formed In Situ from propane and air: Part III. Control of furnace atmosphere composition with a zirconia oxygen sensor, Met. Trans. B. 11 (1980) 485–491.
DOI: 10.1007/bf02676893
Google Scholar
[13]
S.-J. Lee, D.K. Matlock, C.J. Van Tyne, An Empirical Model for Carbon Diffusion in Austenite Incorporating Alloying Element Effects, ISIJ Int. 51 (2011) 1903–(1911).
DOI: 10.2355/isijinternational.51.1903
Google Scholar
[14]
D.-W. Kim, H.-H. Cho, W.-B. Lee, K.T. Cho, Y.-G. Cho, S.-J. Kim, H.N. Han, A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity, Mater. Design. 99 (2016) 243–253.
DOI: 10.1016/j.matdes.2016.03.047
Google Scholar
[15]
A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S.-Y. Kim, S. Kubota, Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear, J. Mater. Proc. Tech. 209 (2009) 3597–3609.
DOI: 10.1016/j.jmatprotec.2008.08.017
Google Scholar
[16]
Steel and its Heat Treatment: a Handbook, Swerewa IVF, (2012).
Google Scholar
[17]
ASTM E140. Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness. ASTM International, (2012).
DOI: 10.1520/e0140-12br19e01
Google Scholar
[18]
Totten G.E. Steel Heat Treatment: Metallurgy And Technologies. CRC Press, (2006).
Google Scholar
[19]
M.V. Maisuradze, A.A. Kuklina, Numerical Solution of the Differential Diffusion Equation for a Steel Carburizing Process, Solid State Phen. 284 (2018) 1230–1234.
DOI: 10.4028/www.scientific.net/ssp.284.1230
Google Scholar
[20]
Fried I. Numerical Solution of Differential Equations. Elsevier Inc., (1979).
Google Scholar