Effect of Chemical Composition of Glassy Phase of Porcelain Stoneware on Product Brittleness

Article Preview

Abstract:

During the operation of porcelain stoneware sometimes there is a type of defects associated with crumbling from the edge of tile. In addition, cracks occur when a small object is fallen and during transportation of the products. Compared to conventional ceramic floor tiles, porcelain stoneware has increased strength, which explains its high price. The brittle failure is most likely, due to the hardening of glassy phase of tiles during cooling stage of the firing process. As a rule, the quenching temperature depends on the chemical composition of the glassy phase formed during firing. Both the phase and chemical composition of porcelain stoneware, and the chemical composition of the glassy phase are determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-259

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Sánchez, J. García-Ten, V. Sanz et al, Porcelain tile: Almost 30 Years of Steady Scientific-Technological Evolution, Ceramics International, 36(3) (2010) 831-845.

DOI: 10.1016/j.ceramint.2009.11.016

Google Scholar

[2] L. Baraldi, World Production and Consumption of Ceramic Tiles, Ceramic World Review, 118 (2016) 68-80.

Google Scholar

[3] Ceramic (ceramic granites) plates. Specifications, GOST R 57141-2016.

Google Scholar

[4] G. Biffi, Porcelain Stoneware, Gruppo Editoriale Faenza (Ed.), (1997).

Google Scholar

[5] L. Esposito, A. Tucci, D. Naldi, The Reliability of Polished Porcelain Stoneware Tiles, J Eur Ceram Soc, 25 (2005) 1487-1498.

DOI: 10.1016/j.jeurceramsoc.2004.05.030

Google Scholar

[6] W.M. Carty, U. Senapati, Porcelain – Raw Materials, Processing, Phase Evolution and Mechanical Behavior, J Amer Ceram Soc, 81 (1998) 3-20.

DOI: 10.1111/j.1151-2916.1998.tb02290.x

Google Scholar

[7] Ola Saleh Mahdi, Study the Influence of Sintering on the Properties of Porcelain Stoneware Tiles, Int J Appl Eng Research, 13 (2018) 3248-3254.

Google Scholar

[8] C. Zanelli, M. Raimondo, M. Dondi et al, Sintering Mechanisms of Porcelain Stoneware Tiles, In: Castellón QualiCer, (2004) 247-259.

Google Scholar

[9] R.T. Zauberas, A. Boschi, Studies on Formulations for Porcelain Stoneware Tiles, In: Castellón QualiCer, (2004) 213-216.

Google Scholar

[10] C. Leonelli, F. Bondioli, P. Veronesi et al, Enhancing the Mechanical Properties of Porcelain Stoneware Tiles: A Microstructure Approach, J Eur Ceram Soc, 20 (2001) 785-793.

DOI: 10.1016/s0955-2219(00)00266-1

Google Scholar

[11] A. Tucci, L. Esposito, L. Malmusi et al, New Body Mixes for Porcelain Stoneware Tiles with Improved Mechanical Characteristics, J Eur Ceram Soc, 27 (2007) 1875-1881.

DOI: 10.1016/j.jeurceramsoc.2006.05.007

Google Scholar

[12] I.M. Tereshchenko, G.N. Pun'ko and L.V. Serikova, Optimization of Ceramic Granite Compositions, Glass Ceram, 57 (2000) 435-437.

Google Scholar

[13] J. Martín-Márquez, J. Ma. Rincón and M. Romero, Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles, Ceram Int, 34 (2008) 1867-1873.

DOI: 10.1016/j.ceramint.2007.06.006

Google Scholar

[14] J. Martín-Márquez, J. Ma. Rincón and Maximina Romero, Effect of Microstructure on Mechanical Properties of Porcelain Stoneware, J Eur Ceram Soc, 30 (2010) 3063-3069.

DOI: 10.1016/j.jeurceramsoc.2010.07.015

Google Scholar

[15] M. Romero, J.M. Perez, Relation Between the Microstructure and Technological Properties of Porcelain Stoneware. A review, Materiales de Construcción, 65 (2015) e065.

DOI: 10.3989/mc.2015.05915

Google Scholar

[16] J. Trpčevská, J. Briančin, L. Medvecky et al, Microstructure and Porcelain Stoneware Properties, Key Engineering Materials, 223 (2002) 265-268.

DOI: 10.4028/www.scientific.net/kem.223.265

Google Scholar

[17] L. Esposito, A. Tucci, Porcelain Stoneware Tile Surfaces, Am Ceram Soc Bull, 79 (2000) 59-63.

Google Scholar

[18] M. Dondi, G. Ercolani, M. Marsigli et al, The Chemical Composition of Porcelain Stoneware Tiles and its Influence on Microstructure and Mechanical Properties, Interceram, 48(2) (1999) 75-83.

Google Scholar

[19] T. Manfredini, G. C. Pellacani, M. Romagnoli, Porcelainized Stoneware Tile, Am Ceram Soc Bull, 74(5) (1995) 76-79.

Google Scholar

[20] J. Martín-Márquez, A.G. de la Torre, M. A. G. Aranda et al, Evolution with Temperature of Crystalline and Amorphous Phases in Porcelain Stoneware, J Am Ceram Soc, 92 (2009) 229-234.

DOI: 10.1111/j.1551-2916.2008.02862.x

Google Scholar

[21] Z. Chiara, M. Dondi, G. Guarini et al, Influence of Strengthening Components on Industrial Mixture of Porcelain Stoneware Tiles, Key Engineering Materials, 264-268 (2004) 1491-1494.

DOI: 10.4028/www.scientific.net/kem.264-268.1491

Google Scholar

[22] A. Tucci, L. Esposito, L. Malmusi, New Body Mixes for Porcelain Stoneware Tiles with Improved Mechanical Characteristics, J Eur Ceram Soc, 27(2) (2007) 1875-1881.

DOI: 10.1016/j.jeurceramsoc.2006.05.007

Google Scholar

[23] E. Sanchez, M. J. Orts, J. G. Ten et al, Porcelain Tile Composition: Effect on Phase Formation and End Products, Am Ceram Soc Bull, 80 (2001) 43-49.

Google Scholar

[24] B. Pinto, W. M. Carty, S. Misture, Measurement of Residual Strain in Quartz Particles in Porcelain; Presented at Science of Whitewares III, June, Alfred University, (2000) 12-14.

Google Scholar

[25] H. Lee, W. M. Carty, Glass Phase Composition in Porcelains and Correlation with Firing Temperature, in: Proceedings of the 106th Annual Meeting and Exposition of the American Ceramic Society, April 18-21 2004, Indianapolis, Indiana, USA, (2004).

Google Scholar

[26] D. J. Green, Introduction to Mechanical Properties of Ceramics. Cambridge University Press, Cambridge, (1998).

Google Scholar

[27] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, Wiley, NY, (1976).

Google Scholar

[28] R. A. McMaster, Fundamentals of Tempered Glass, Ceram Eng Sci Proc, 10 (1989) 193-206.

Google Scholar