[1]
G.G. Libowitz, A.J. Maeland, Interactions of hydrogen with metallic glass alloys, J. Less Common Met. 101(1984) 131-143.
DOI: 10.1016/0022-5088(84)90091-2
Google Scholar
[2]
A.J. Maeland, Hydrogen in crystalline and non-crystalline metals and alloys: similarities and differences in: Rapidly Quenched Metals, ed. by S. Steub and H. Warlimont (Elsevier, Amsterdam, 1985) 1507-1514.
Google Scholar
[3]
V.V. Roschupkin et al. in Thermophysics in condensed media. Ed. by I.I. Novikov, Moscow, Nauka, (1995).
Google Scholar
[4]
U. Koster, H. Schroeder, in Glass - Current Issues (Proc. NATO ASI, Ser. E, No. 92, Eds A F Wright, J Dupuy) (Dordrecht: Martinus Nÿhoff Publ., 1985), (1986).
Google Scholar
[5]
L.V. Spivak, N.Ye. Skryabina, Effect of hydrogen on the properties of amorphous alloys finemet, type: PEN-X effect. International Journal of Hydrogen Energy, 24(1999) 795-799.
DOI: 10.1016/s0360-3199(98)00148-7
Google Scholar
[6]
L.V. Spivak, V.A. Khonik, N.Ye. Skryabina, et al., Hydrogen induced deformation of amorphous alloys, Letters in Journal of Technical Physics, 19(17) (1993) 39-43.
Google Scholar
[7]
L.V. Spivak, Synergy effects in the deformation response of thermodynamically open metal hydrogen systems, Uspekhi Fizicheskikh Nauk, 178(2008) 897–922.
DOI: 10.1070/pu2008v051n09abeh006506
Google Scholar
[8]
W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira, C. Bolfarini, Corrosion resistance of Fe-based amorphous alloys, J. Alloys Compd. 586(2014) S105-S110.
DOI: 10.1016/j.jallcom.2012.12.130
Google Scholar
[9]
K. Mondal, U.K. Chatterjee, B.S. Murty, Surface oxides and their effect on the oxidation behavior of amorphous and nanoquasicrystalline Zr–Pd and Zr–Pt alloys, J. Mater. Res. 21(2006) 639-646.
DOI: 10.1557/jmr.2006.0084
Google Scholar
[10]
N.A. Skulkina, O.A. Ivanov, I.O. Pavlova, Interaction of the surface of ribbons of amorphous soft-magnetic iron-based alloys with water and their magnetic properties, Phys. Metal. Metall. 112(2011) 457-465.
DOI: 10.1134/s0031918x11050292
Google Scholar
[11]
F.Z. Gilmutdinov, O.M. Kanunnikova, Prediction of changes in the composition of the surface of multicomponent alloys under thermal conditions, Phys. Metal. Metall. 84(2) (1997) 78-88.
Google Scholar
[12]
H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids. Radiat. Eff. 25(1975) 1-12.
DOI: 10.1080/00337577508242047
Google Scholar
[13]
P.H. Holloway, P. Bhattacharia, Limitation of ion etching for interface analysis, Surf. Interface Anal. 3 (No3) (1981), 118-125.
DOI: 10.1002/sia.740030305
Google Scholar
[14]
R. Kelly, On the problem of whether mass of chemical bonding is more important to bombardment-induced compositional changes in alloys and oxide, Surf. Sci. 100 (1980), 85-107.
DOI: 10.1016/0039-6028(80)90446-x
Google Scholar
[15]
G.K. Wolf, Chemical effects of ion bombardment, Instr. Inorg. Chem. 85 (1979), 1-88.
Google Scholar
[16]
S. Hoffmann, Quantitative depth profiling in surface analysis: a review, Surf. Interface Anal. 2(4) (1988) 148-160.
Google Scholar
[17]
О.М. Kanunnikova, О.Yu. Goncharov, V.I. Ladyanov, Assessment of the structural state of the amorphous alloys thin surface layers, Mater. Sci. Forum, 946(2019) 174-181.
DOI: 10.4028/www.scientific.net/msf.946.174
Google Scholar
[18]
О.М. Kanunnikova, N.Ye. Skryabina, F.Z. Gilmutdinov, A.S. Petrov, V.Ya. Bayankin, The segregation processe in the surface layers of amorphous alloy Fe73.8Si12.7B9.4Nb3.2Cu as a result of electrolytic hydrogen absorption, Bull. Univers. Non-ferrous metallurgy. 4 (2000) 57-59.
Google Scholar