[1]
A. Bogatov, D. Salikhyanov, Development of bonding mechanisms for different materials during forming, Metallurgist. 60: 11–12, (2017) 1175–1179.
DOI: 10.1007/s11015-017-0424-x
Google Scholar
[2]
M. Akdesir, D. Zhou, F. Foadian, H. Palkowski, Study of Different Surface Pre-treatment Methods on Bonding Strength of Multilayer Aluminum Alloys/Steel Clad Material, International Journal of Engineering Research & Science. 2–1 (2016) 169–177.
Google Scholar
[3]
M. Movahedi, A.H. Kokabi, S.M. Seyed Reihani, Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization, Materials and Design. 32 (2011) 3143–3149.
DOI: 10.1016/j.matdes.2011.02.057
Google Scholar
[4]
J.-S. Lee, H.-T. Son, K.-Y. Lee et al., Characterization of Mg-Al sheet clad materials fabricated by hot rolling, Advanced Materials Research. 26–28 (2007) 409–412.
DOI: 10.4028/www.scientific.net/amr.26-28.409
Google Scholar
[5]
M. Jafarian, M.S. Rizi, M. Jafarian, Effect of thermal tempering on microstructure and mechanical properties of Mg-AZ31/Al-6061 diffusion bonding, Materials Science and Engineering A, 666 (2016) 372–379.
DOI: 10.1016/j.msea.2016.04.011
Google Scholar
[6]
J. Liu, M. Li, S. Sheu et al., Macro- and micro-surface engineering to improve hot roll bonding of aluminum plate and sheet, Material Science and Engineering A, 479 (2008) 45-57.
DOI: 10.1016/j.msea.2007.06.022
Google Scholar
[7]
A. Mikloweit, M. Bambach, M. Pietryga, G. Hirt, Development of a testing procedure to determine the bond strength in joining-by-forming processes, Advanced Materials Research. 966–967 (2014) 481-488.
DOI: 10.4028/www.scientific.net/amr.966-967.481
Google Scholar
[8]
A. Wang, O. Ohashi, and K. Ueno, Effect of Surface Asperity on Diffusion Bonding, Materials Transactions. 47 (2006) 179–184.
DOI: 10.2320/matertrans.47.179
Google Scholar
[9]
N. Bay, Cold Pressure Welding – The mechanisms Governing Bonding, Journal of Engineering for Industry. 101 (1979) 121–127.
DOI: 10.1115/1.3439484
Google Scholar
[10]
C. Zhang, H. Li, M. Li, Role of surface finish on interface grain boundary migration in vacuum diffusion bonding, Vacuum. 137 (2017) 49–55.
DOI: 10.1016/j.vacuum.2016.12.021
Google Scholar
[11]
C. Wang, Y. Jiang, J. Xie, Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum–steel composite sheet produced by cold roll bonding process, Materials Science and Engineering A. 652 (2016) 51–58.
DOI: 10.1016/j.msea.2015.11.039
Google Scholar
[12]
A. Bagheri, M.R. Toroghinejad, A. Taherizadeh, Effect of Roughness and Surface Hardening on the Mechanical Properties of Three-Layered Brass/IF Steel/Brass Composite, Trans. Indian. Inst. Met. 71:9 (2018) 2199–2210.
DOI: 10.1007/s12666-018-1351-7
Google Scholar
[13]
A.P. Husu, Yu.R. Vitenberg, V.A. Pal'mov, Roughness of surfaces (statistical-theoretic approach), Nauka, 1975 (In Russian).
Google Scholar
[14]
E.P. Unksov, W. Yohnson V.L. Kolmogorov, Theory of plastic deformations of metals, Machine building, Moscow, 1983 (In Russian).
Google Scholar
[15]
Hill R., The mathematical theory of plasticity. Oxford University Press, (1998).
Google Scholar