Investigation of Plastic Properties of Ø8 Rod Made of Fire-Refined Copper of Kmor Grade

Article Preview

Abstract:

Results of the comparative ductility evaluation of Ø8 rods made of copper of the KM and KMor grades are discussed. It has been found out that plastic properties of KM and KMor grade rods at room temperature practically do not differ in their specific elongation and after-fracture contraction indices. At the same time, the ductility indices of KMor rod at temperature +850 °С became, practically, half-values. Increased spread of physical property values particularly the specific ohmic resistance of the rod KMor can be explained by the cumulative effect of variations of the chemical metal composition, and changes in process variables of the process (for example, unstable density of a cast bar), that initiate an occurrence of tension stresses during rolling. Calculation data of the limiting drawing ratio μr demonstrated that its value must not exceed 1.475.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

665-670

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Repschlaeger, Innovations in the field of non-ferrous metal processing, Non-Ferrous Bangkok, Latest Developments in Non-Ferrous Wire and Tube Technology, Joint IWMA and ITA Seminar at Wire/Tube Southeast Asia. (2007) 69-85.

DOI: 10.3403/bsiso7989

Google Scholar

[2] R. Adams, U. Sinha, Improving the quality of continuous copper rod, The Journal of The Minerals. 42 (1990) 31–34.

Google Scholar

[3] D. Klefoth, S. Seemer, Control crucial to copper rod quality, World Pumps. 4 (2010) 10-13.

DOI: 10.1016/s0262-1762(10)70119-x

Google Scholar

[4] Information on http://www.asm-recycling.co.uk/.

Google Scholar

[5] Information on https://www.stichtingmirre.nl/.

Google Scholar

[6] P.F. Cuypers, Continuous casting in the copper industry. (EUT - BDK report. Dept. of Industrial Engineering and Management Science, Eindhoven, Technische Universiteit Eindhoven. 29 (1987).

Google Scholar

[7] O.G. Arderiu, G. Properzi, Continuous copper rod production from 100 % scrap, Wire Journal International. (1996) 75-82.

Google Scholar

[8] E. Ten, I. Badmazhapova, Technologies of refining and recycling of copper and copper alloys, Archives of Metallurgy and Materials. 55 (2010) 935-938.

Google Scholar

[9] M. Bertram, T.E. Graedel, H. Rechberger and S. Spatari, The contemporary European copper cycle: waste management subsystem, Ecological Economics. 42 (2002) 43-57.

DOI: 10.1016/s0921-8009(02)00100-3

Google Scholar

[10] S.L. Rovin, L.M. Novak, A.V. Fateev, Retsikling loma i otkhodov medi i mednykh splavov v Belarusi, Lit'e i metallurgiya. 2 (2017) 128-130.

Google Scholar

[11] Information on http:// www.sms-group.com.

Google Scholar

[12] Information on https://www.lafarga.es/es.

Google Scholar

[13] Information on http://www.properzi.com.

Google Scholar

[14] A.N. Smirnov, I.V. Shutov, S.V. Kuberskiy and S.M. Volkov, Primenenie liteyno-prokatnogo modulya v kompleksnoy tekhnologii polucheniya kachestvennoy produktsii iz mednogo loma, Elektrometallurgiya. 1 (2012) 8-12.

Google Scholar

[15] A.N. Smirnov, I.V. Shutov, V.E. Ukhin, S.M. Volkov and V.A. Golovatyy, Issledovanie razrusheniya rabochey poverkhnosti razlivochnogo kolesa dlya razlivki nepreryvnolitykh mednykh zagotovok, Elektrometallurgiya. 4 (2013) 32-37.

Google Scholar

[16] M. Schlesinger, M. King, K. Sole and W. Davenport: submitted to Extractive Metallurgy of Copper (2011).

Google Scholar

[17] J. Meseha, G. Meseha, Comparison of competing continuous casting processes, Wire Journal International. 38 (2005) 185-193.

Google Scholar

[18] M. Garcia Scrap melting technology, Wai's first-ever Global Continuous Casting Forum. (2011) 506–512.

Google Scholar

[19] Y.N. Smyrnov, A.N. Smirnov, S.V. Kuberskiy and O.Y. Smyrnov, Influence of rotary CCM casting wheel working surface condition on steel product quality, Proceedings of Higher Schools Nonferrous Metallurgy. 5 (2017) 50-59.

DOI: 10.17073/0021-3438-2017-5-50-59

Google Scholar

[20] O.E. Osintsev, V.N. Fѐdorov, Med' i mednye splavy. Otechestvennye i zarubezh-nye marki. Spravochnik, Mashinostroenie, Moscou, (2004).

Google Scholar

[21] A.K. Nikolaev, Materialy dlya kristallizatorov nepreryvnogo lit'ya slitkov,Tsvetnye metally. 12 (1983) 51-55.

Google Scholar

[22] A.N. Smirnov, E.N. Smirnov, V.A. Sklyar, V.A. Belevitin and R.E. Pivovarov, Producing Structural-Steel Bar from Continuous-Cast Billet, Steel in translation. 48 (2018) 233–239.

DOI: 10.3103/s0967091218040113

Google Scholar

[23] Y.N. Smyrnov, V.A. Skliar, O.E. Smirnov, V.A. Belevitin and R.E. Pivovarov, Research of the behavior of macrostructure defects of the pre-deformed continuous cast billets during rolling, Izvestiya Vysshikh Uchebnykh Zavedenij, Chernaya Metallurgiya. 61 (2018) 399-407.

DOI: 10.17073/0368-0797-2018-5-399-406

Google Scholar

[24] V. Kukhar, V. Artiukh, A. Butyrin, and Andrii Prysiazhnyi, Stress-Strain State and Plasticity Reserve Depletion on the Lateral Surface of Workpiece at Various Contact Conditions during Upsetting, Advances in Intelligent Systems and Computing, Springer. 692 (2018) 201–211.

DOI: 10.1007/978-3-319-70987-1_22

Google Scholar

[25] E.N. Smirnov, V.A. Sklyar, O.E. Smirnov, Mitrofanov M.V., Belevitin V.A and Smirnov A.N. Complete evaluation of extruded aluminum section and semiproduct mechanical properties under conditions of typical regional manufacturer Altek, Metallurgist. 61 (2018) 878-883.

DOI: 10.1007/s11015-018-0580-7

Google Scholar

[26] V. Belevitin, Y. Smyrnov, S. Kovalenko, A. Suvorov and V. Skliar, Modeling of the Energy Potential saving in the production of seamless pipesa, Journal of Chemical Technology and Metallurgy. 52 (2017) 718-723.

Google Scholar

[27] Y.N. Smyrnov, V.A Skliar, Features of Deformation of Partly Crystallization Blooms at their Two-Stage Soft Reduction, Materials Science Forum. 704 (2012) 1-5.

DOI: 10.4028/www.scientific.net/msf.704-705.1

Google Scholar

[28] G.A. Orlov, Inzhenernaya otsenka obrabatyvaemosti metallov davleniem, Izv. Vuzov. Chernaya metallurgiya. 3 (2013) 11-14.

Google Scholar