[1]
A. Hohenwarter, B. Völker, M. W. Kapp, Y. Li, S. Goto, D. Raabe, R. Pippan, Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires, Sci. Rep. 6 (2016) 33228.
DOI: 10.1038/srep33228
Google Scholar
[2]
V.I. Izotov, V.A. Pozdnyakov, E.V. Luk'yanenko, O.Yu. Usanova, G.A. Filippov, Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel, The Physics of Metals and Metallography. 103 (2007) 519-529.
DOI: 10.1134/s0031918x07050122
Google Scholar
[3]
J. Toribio, B. González, J.C. Matos, F.J. Ayaso, Role of the microstructure on the mechanical properties of fully pearlitic eutectoid steels, Fracture and Structural Integrity. 30 (2014) 424-430.
DOI: 10.3221/igf-esis.30.51
Google Scholar
[4]
Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno, A. Moriai, N. Minakawa, Y. Morii, In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading, Acta Materialia. 53 (2005) 463-467.
DOI: 10.1016/j.actamat.2004.10.003
Google Scholar
[5]
K. Shibanuma, S. Aihara, S. Ohtsuka, Observation and Quantification of Crack Nucleation in Ferrite-Cementite Steel, ISIJ International. 54 (2014) 1719-1728.
DOI: 10.2355/isijinternational.54.1719
Google Scholar
[6]
Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, Evolution of strength and microstructure during annealing of heavily cold-drawn 6.3 GPa hypereutectoid pearlitic steel wire, Acta Materialia. 60 (2012) 4005-4016.
DOI: 10.1016/j.actamat.2012.03.006
Google Scholar
[7]
X. Zhang, N. Hansen, A. Godfrey, X. Huang, Microstructural evolution, strengthening mechanisms and strength structure relationship in cold-drawn pearlitic steel wire, Proceedings of the Risø International Symposium on Materials Science, 33 (2012) 407-416.
DOI: 10.1016/j.actamat.2011.02.017
Google Scholar
[8]
M. Zelin, Microstructure evolution in pearlitic steels during wire drawing, Acta Materialia. 50 (2002) 4431-4447.
DOI: 10.1016/s1359-6454(02)00281-1
Google Scholar
[9]
M. Suliga, R. Kruzel, T. Garstka, J. Gazdowicz, The influence of drawing speed on structure changes in high carbon steel wires. Metalurgija, 54 (2015) 161-164.
Google Scholar
[10]
E. Brandaleze, Structural Evolution of Pearlite in Steels with Different Carbon Content under Drastic Deformation during Cold Drawing, Procedia Materials Science 8 (2015) 1023-1030.
DOI: 10.1016/j.mspro.2015.04.164
Google Scholar
[11]
G. Gerstein, F. Nürnberger, Structural evolution of thin lamellar cementite during cold drawing of eutectoid steels, Procedia Engineering. 81 (2014) 694-699.
DOI: 10.1016/j.proeng.2014.10.062
Google Scholar
[12]
Z. Muskalski, A. Milenin, Development of Finite Element Model of Reorientation of Cementite Lamellae in Pearlite Colonies in Wire Drawing Process for Wires Made from High Carbon Steel, Solid State Phenomena, 165 (2010) 136-141.
DOI: 10.4028/www.scientific.net/ssp.165.136
Google Scholar
[13]
Z. Muskalski, A. Milenin, P. Kustra, The multi-scale FEM simulation of wire fracture during drawing of pearlitic steel, Materials Science Forum, 575-578 (2008) 1433-1438.
DOI: 10.4028/www.scientific.net/msf.575-578.1433
Google Scholar
[14]
A. Milenin, Z. Muskalski, S. Wiewiórowska, P. Kustra, The multi-scale FEM simulation of the drawing processes of high carbon steel, Journal of Achievements in Materials and Manufacturing Engineering, 23 (2007) 71-74.
DOI: 10.4028/www.scientific.net/msf.575-578.1433
Google Scholar
[15]
S. Sadeghpour, Developing Very Fine Nanopearlitic Structure in a High Carbon Steel Wire before Drawing, International Journal of ISSI, 8 (2011) 1-4.
Google Scholar
[16]
X. Peng, J. Fan, J. Zeng, Microstructure-based description for the mechanical behavior of single pearlitic colony, International Journal of Solids and Structures, 39 (2002) 435-448.
DOI: 10.1016/s0020-7683(01)00222-0
Google Scholar
[17]
D. Konstantinov, A. Korchunov, Multi-Scale Computer Simulation Of Metal Forming Processes, Vestnik of Nosov Magnitogorsk State Technical University, 1 (2015) 36-43.
Google Scholar
[18]
D. Konstantinov, K. Bzowski, A. Korchunov, M. Pietrzyk, R. Kuziak, Computer Simulation of Transformation during TRIP Steel Rod Drawing, Key Engineering Materials, 716 (2016) 620-631.
DOI: 10.4028/www.scientific.net/kem.716.620
Google Scholar
[19]
Y.D. Liu, Q.W. Jiang, G. Wang, Influence of microstructures and textures on the torsional behavior of pearlitic wires, Journal of Materials Science and Technology, 21 (2005) 357-360.
Google Scholar
[20]
X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, H. Vandekinderen, Modeling work hardening of pearlitic steels by phenomenological and Taylor-type micromechanical models, Acta Materialia, 54 (2006) 1029-1040.
DOI: 10.1016/j.actamat.2005.10.030
Google Scholar
[21]
N.Yu. Zolotorevsky, D.M. Vasiliev, Yu.F. Titovets, X-ray study of micro stresses in lamellar pearlite, Materials Science Forum, 495-497 (2005) 1511-1516.
DOI: 10.4028/www.scientific.net/msf.495-497.1511
Google Scholar
[22]
F. Fang, Y. Zhao, P. Liu, L. Zhou, X. Hub, X. Zhou, Z. Xie, Deformation of cementite in cold drawn pearlitic steel wire, Materials Science and Engineering A, 608 (2014) 11-15.
DOI: 10.1016/j.msea.2014.04.050
Google Scholar
[23]
L. Zhou, Y. Zhao, F. Fang, Effect of Reserved Texture on Mechanical Properties of Cold Drawn Pearlitic Steel Wire, Advanced Materials Research, 936 (2014) 1948-1952.
DOI: 10.4028/www.scientific.net/amr.936.1948
Google Scholar
[24]
F. Fang, L. Zhou, X. Hub, X. Zhou, Y. Tu, Z. Xie, J. Jiang, Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture, Materials and Design, 79 (2015) 60-67.
DOI: 10.1016/j.matdes.2015.04.036
Google Scholar
[25]
J. Toribio, B. González, J. Matos, Microstructure and Mechanical Properties in Progressively Drawn Pearlitic Steel, Materials Transactions, 55 (2014) 93-98.
DOI: 10.2320/matertrans.ma201316
Google Scholar
[26]
G. Ning, L. Baifeng, W. Bingshu, L. Qing, Microstructure and texture evolution in fully pearlitic steel during wire drawing, Science China: Technological Sciences, 56 (2013) 1139-1146.
DOI: 10.1007/s11431-013-5184-7
Google Scholar