[1]
P. I. Polukhin, G. Ya. Gun, A. M. Galkin, Resistance to plastic deformation of metals and alloys, Metallurgiya, Moscow, (1976).
Google Scholar
[2]
G. S. Burkhanov, V. S. Yusupov, A. E. Shelest [et al.], Plastic deformation nonuniformity and localization during metal forming, Russian Metallurgy (Metally). 7 (2012) 592–598.
DOI: 10.1134/s0036029512070051
Google Scholar
[3]
Yu. Loginov, A. Ershov, The influence of hardening curve on deformation localization during the upsetting of titanium article, Titan. 1 (2012) 22-28.
Google Scholar
[4]
A. A. Ershov, Yu. N. Loginov, S. L. Demakov, Assessing the consequences of the softening of metal during hot-working by using the software package QForm V8, Metallurgist. 59 (2015) 659-663.
DOI: 10.1007/s11015-015-0155-9
Google Scholar
[5]
D. A. Pavlov, M. V. Erpalov, G. V. Shimov [et al.], Investigation of the influence of material properties on the inhomogeneity of deformation during lengthwise rolling of tubes on a stub mandrel, Chernye Metally. 10 (2018) 17-21.
DOI: 10.1016/j.matpr.2019.07.053
Google Scholar
[6]
Yu. N. Loginov, S. L. Demakov, A. G. Illarionov [et al.], Effect of the strain rate on the properties of electrical copper, Russian Metallurgy (Metally). 3 (2011) 194-201.
DOI: 10.1134/s0036029511030098
Google Scholar
[7]
M. L. Lobanov, Yu. N. Loginov, S. V. Danilov [et al.], Effect of Hot Rolling Rate on the Structure and Texture Condition of Plates of the Al – Si – Mg Alloy System, Metal Science and Heat Treatment, 60 (2018) 322-328.
DOI: 10.1007/s11041-018-0279-1
Google Scholar
[8]
W. Xiong, J. Lohmar, M. Bambach [et al.], A new method to determine isothermal flow curves for integrated process and microstructural simulation in metal forming, Int J Mater Form. 8 (2015) 59–66.
DOI: 10.1007/s12289-013-1147-6
Google Scholar
[9]
A. Nadai, Theory of flow and fracture of solids, Volume II, McGraw-Hill Book Company, New York, (1963).
Google Scholar
[10]
D. F. Fields, W. A. Backofen, Determination of strain-hardening characteristics by torsion testing, in: Proceedings of the 6th annual meeting of the society, ASTM Proceeding. 57 (1957) 1259-1272.
Google Scholar
[11]
S. Khoddam, P. H. Hodgson, Post processing of the hot torsion test results using a multi-dimensional modelling approach, Materials & design. 31 (2010) 2578-2584.
DOI: 10.1016/j.matdes.2009.11.029
Google Scholar
[12]
S. Cooreman, D. Lecompte, H. Sol [et al.], Identification of mechanical material behavior through inverse modelling and DIC, Experimental Mechanics. 48 (2008) 421-433.
DOI: 10.1007/s11340-007-9094-0
Google Scholar
[13]
E. Lach, K. Pöhlandt, Testing the plastic behavior of metals by torsion of solid and tubular specimens, Journal of Mechanical Working Technology. – 9(1984) 67-80.
DOI: 10.1016/0378-3804(84)90094-9
Google Scholar
[14]
M. V. Erpalov, E. A. Kungurov, Examination of hardening curves definition methods in torsion test, Solid State Phenomena. 284 (2018) 598-604.
DOI: 10.4028/www.scientific.net/ssp.284.598
Google Scholar
[15]
Erpalov, M.V., Pavlov, D.A. Torsion testing method for cylindrical samples of continuous section. (2018) Chernye Metally (SJR 0.13, Q4), 12, pp.72-76.
Google Scholar
[16]
M. V. Erpalov, D. A. Pavlov, Control and experimental data processing in torsion testing with variable acceleration, CIS Iron and Steel Review 16 (2018) 71-75.
DOI: 10.17580/cisisr.2018.02.15
Google Scholar
[17]
M. V. Erpalov, D. A. Pavlov, Computer Simulation of the Torsion Testing Method with Variable Grip's Acceleration, in XIX International scientific-technical conference The Ural school-seminar of metal scientists-young researchers,, KnE Engineering, p.55–63.
Google Scholar