The Ways of Reaching the Specified Mode of Testing Samples for Torsion with Variable Strain Rate

Article Preview

Abstract:

The paper is devoted to the practical implementation of the new torsion testing method for studying rheological properties of materials in a hot state. This method involves the testing of cylindrical samples in the grips of a test setup, the angular velocity of which changes exponentially. The testing mode allows you to restore the hardening curves of a material according to the test results. This article aims to formulate the requirements for possible ways to implement the proposed testing method, and presents two different ways to obtain the specified exponential testing mode. The experience of their use on the test setup in the Ural Federal University indicates the feasibility of the new testing method, as well as the possibility of a smooth transition to the specified testing mode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

671-677

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. I. Polukhin, G. Ya. Gun, A. M. Galkin, Resistance to plastic deformation of metals and alloys, Metallurgiya, Moscow, (1976).

Google Scholar

[2] G. S. Burkhanov, V. S. Yusupov, A. E. Shelest [et al.], Plastic deformation nonuniformity and localization during metal forming, Russian Metallurgy (Metally). 7 (2012) 592–598.

DOI: 10.1134/s0036029512070051

Google Scholar

[3] Yu. Loginov, A. Ershov, The influence of hardening curve on deformation localization during the upsetting of titanium article, Titan. 1 (2012) 22-28.

Google Scholar

[4] A. A. Ershov, Yu. N. Loginov, S. L. Demakov, Assessing the consequences of the softening of metal during hot-working by using the software package QForm V8, Metallurgist. 59 (2015) 659-663.

DOI: 10.1007/s11015-015-0155-9

Google Scholar

[5] D. A. Pavlov, M. V. Erpalov, G. V. Shimov [et al.], Investigation of the influence of material properties on the inhomogeneity of deformation during lengthwise rolling of tubes on a stub mandrel, Chernye Metally. 10 (2018) 17-21.

DOI: 10.1016/j.matpr.2019.07.053

Google Scholar

[6] Yu. N. Loginov, S. L. Demakov, A. G. Illarionov [et al.], Effect of the strain rate on the properties of electrical copper, Russian Metallurgy (Metally). 3 (2011) 194-201.

DOI: 10.1134/s0036029511030098

Google Scholar

[7] M. L. Lobanov, Yu. N. Loginov, S. V. Danilov [et al.], Effect of Hot Rolling Rate on the Structure and Texture Condition of Plates of the Al – Si – Mg Alloy System, Metal Science and Heat Treatment, 60 (2018) 322-328.

DOI: 10.1007/s11041-018-0279-1

Google Scholar

[8] W. Xiong, J. Lohmar, M. Bambach [et al.], A new method to determine isothermal flow curves for integrated process and microstructural simulation in metal forming, Int J Mater Form. 8 (2015) 59–66.

DOI: 10.1007/s12289-013-1147-6

Google Scholar

[9] A. Nadai, Theory of flow and fracture of solids, Volume II, McGraw-Hill Book Company, New York, (1963).

Google Scholar

[10] D. F. Fields, W. A. Backofen, Determination of strain-hardening characteristics by torsion testing, in: Proceedings of the 6th annual meeting of the society, ASTM Proceeding. 57 (1957) 1259-1272.

Google Scholar

[11] S. Khoddam, P. H. Hodgson, Post processing of the hot torsion test results using a multi-dimensional modelling approach, Materials & design. 31 (2010) 2578-2584.

DOI: 10.1016/j.matdes.2009.11.029

Google Scholar

[12] S. Cooreman, D. Lecompte, H. Sol [et al.], Identification of mechanical material behavior through inverse modelling and DIC, Experimental Mechanics. 48 (2008) 421-433.

DOI: 10.1007/s11340-007-9094-0

Google Scholar

[13] E. Lach, K. Pöhlandt, Testing the plastic behavior of metals by torsion of solid and tubular specimens, Journal of Mechanical Working Technology. – 9(1984) 67-80.

DOI: 10.1016/0378-3804(84)90094-9

Google Scholar

[14] M. V. Erpalov, E. A. Kungurov, Examination of hardening curves definition methods in torsion test, Solid State Phenomena. 284 (2018) 598-604.

DOI: 10.4028/www.scientific.net/ssp.284.598

Google Scholar

[15] Erpalov, M.V., Pavlov, D.A. Torsion testing method for cylindrical samples of continuous section. (2018) Chernye Metally (SJR 0.13, Q4), 12, pp.72-76.

Google Scholar

[16] M. V. Erpalov, D. A. Pavlov, Control and experimental data processing in torsion testing with variable acceleration, CIS Iron and Steel Review 16 (2018) 71-75.

DOI: 10.17580/cisisr.2018.02.15

Google Scholar

[17] M. V. Erpalov, D. A. Pavlov, Computer Simulation of the Torsion Testing Method with Variable Grip's Acceleration, in XIX International scientific-technical conference The Ural school-seminar of metal scientists-young researchers,, KnE Engineering, p.55–63.

Google Scholar