Investigation of Mechanical Properties of Anisotropic Materials Used in Rapid Prototyping Technologies

Article Preview

Abstract:

In this paper, the tensile tests were carried out for the samples made of polylactic acid (PLA) with the use of fused deposition modeling (FDM) with various filling factors. The results of the study showed that the ultimate strength of 3D-printed parts non-linearly depends on the filling factor. In addition, the thermal analysis of the 3D printing process using a thermal camera was performed. The obtained results could be used for medical purposes, e.g. PLA parts can be used as implants in maxillofacial surgery. That kind of temporary implants should have cellular structure and enough strength to sustain external and internal loads.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

821-826

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Sung-Hoon, M. Michael, O. Dan, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. 8 (4) (2002) 248-257.

Google Scholar

[2] Dababneh, I. Ozbolat, Bioprinting technology: A current state-of-the-art review, J. Manuf. Sci. Eng. 136 (2014).

Google Scholar

[3] G. B. Kim, S. Lee, H. Kim, D. H. Yang, Y. H. Kim, Y. S. Kyun, S.U. Kwon, Three-dimensional printing: basic principles and applications in medicine and radiology, Korean journal of radiology 17 (2) (2016) 182-197.

DOI: 10.3348/kjr.2016.17.2.182

Google Scholar

[4] A. Liu, G. H. Xue, M. Sun, H. F. Shao, C. Y. Ma, Q. Gao, Y. He, 3D printing surgical implants at the clinic: an experimental study on anterior cruciate ligament reconstruction, Scientific reports 6 (2016) 21704.

DOI: 10.1038/srep21704

Google Scholar

[5] M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarašiene, R. Sirmenis, A. Žukauskas, A. Piskarskas, In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers, Appl. Phys. A 108 (3) (2012) 751-759.

DOI: 10.1007/s00339-012-6965-8

Google Scholar

[6] A. V. Do, B. Khorsand, S. M. Geary, A. K. Salem, 3D printing of scaffolds for tissue regeneration applications, Advanced healthcare materials 4 (12) (2015) 1742-1762.

DOI: 10.1002/adhm.201500168

Google Scholar

[7] T. Serra, M.A. Mateos-Timoneda, J.A. Planell, M. Navarro, 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine, Organogenesis 9 (4) (2013) 239-244.

DOI: 10.4161/org.26048

Google Scholar

[8] M. Malinauskas, S. Rekštyte, L. Lukoševicius, S. Butkus, E. Balciunas, M. Peciukaityte, D. Baltriukiene, S. Juodkazis, 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation, Micromachines 5 (4) (2014) 839-858.

DOI: 10.3390/mi5040839

Google Scholar

[9] D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J Tissue Eng Regen Med 1 (2007) 245-260.

DOI: 10.1002/term.24

Google Scholar

[10] P. Dudek, FDM 3D printing technology in manufacturing composite elements, Arch Metall Mater. 58 (4) (2013) 1415-1418.

DOI: 10.2478/amm-2013-0186

Google Scholar

[11] J. Chu, S. Engelbrecht, G. Graf, A comparison of synthesis methods for cellular structures with application to additive manufacturing, Rapid Prototype Journal 16 (4) (2010) 275-283.

DOI: 10.1108/13552541011049298

Google Scholar

[12] R. Singh, R. Kumar, I. Farina, M. De Piano, A. Amendola, F. Fraternali, Mechanical and experimental study on the use of sustainable materials for additive manufacturing, IOP Conference Series: Materials Science and Engineering 473 (1) (2019) № 012010.

DOI: 10.1088/1757-899x/473/1/012010

Google Scholar

[13] S.-Y.Gao, Y.-H. Li, Y.-F. Zhou, X. Lu, Q. Dong, B. Wang, J.-M. Zhao, Y.-C. Xiao, Mechanical properties experiment of 3D printing forming specimens with fused deposition modeling (FDM), Journal of Plasticity Engineering 24 (1) (2017) 200-206.

Google Scholar

[14] M. Malinauskas, E. Skliutas, L. Jonušauskas, D. Mizeras, A. Šešok, A. Piskarskas, Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture, Proc. SPIE 9505, Quantum Optics and Quantum Information Transfer and Processing (2015) № 95050P.

DOI: 10.1117/12.2178515

Google Scholar

[15] F. Zhao, D. Li, Z. Jin, Effect of PEEK fused deposition modeling temperature on tensile properties of parts, Electromachining & Mould (5) (2015) 43-47.

Google Scholar

[16] I. Durrgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyping Journal 20 (3) (2014) 228-235.

DOI: 10.1108/rpj-10-2012-0091

Google Scholar

[17] N.V.S.S. Sagar, K.S. Vepa, Experimental investigations for improving the strength of parts manufactured using FDM process, Lecture Notes in Mechanical Engineering (2019) 307-313.

DOI: 10.1007/978-981-13-2697-4_34

Google Scholar

[18] M. Navarro, M.P. Ginebra, J.A. Planell, C.C. Barrias, M.A. Barbosa, In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass, Acta Biomater 1 (2005) 411-419.

DOI: 10.1016/j.actbio.2005.03.004

Google Scholar

[19] A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal 9 (4) (2003) 252-264.

DOI: 10.1108/13552540310489631

Google Scholar

[20] Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee, V.L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials and Design 123 (2017) 154-164.

DOI: 10.1016/j.matdes.2017.03.051

Google Scholar

[21] O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Materials and Manufacturing Processes 15 (1) (2000) 107-122.

DOI: 10.1080/10426910008912976

Google Scholar

[22] T. Letcher, M. Waytashek, Material property testing of 3d-printed specimen in PLA on an entry-level 3d printer, International Mechanical Engineering Congress and Exposition (2014).

DOI: 10.1115/imece2014-39379

Google Scholar

[23] S. Perepelkina, P. Kovalenko, R. Pechenko, K. Makhmudova, Investigation of friction coefficient of various polymers used in rapid prototyping technologies with different settings of 3D printing, Tribology in Industry 39 (4) (2017) 519-526.

DOI: 10.24874/ti.2017.39.04.11

Google Scholar

[24] Information on https://www.shimadzu.com/an/industry/petrochemicalchemical/i215.html.

Google Scholar

[25] ISO standard 1926:2009. Rigid cellular plastics - Determination of tensile properties, (2009).

Google Scholar

[26] Information on https://www.ssi.shimadzu.com/products/universal-tensile-testing/index.html.

Google Scholar

[27] Information on http://www.flirmedia.com/MMC/CVS/Appl_Stories/AS_0015_EN.pdf.

Google Scholar