[1]
A. Sung-Hoon, M. Michael, O. Dan, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp. 8 (4) (2002) 248-257.
Google Scholar
[2]
Dababneh, I. Ozbolat, Bioprinting technology: A current state-of-the-art review, J. Manuf. Sci. Eng. 136 (2014).
Google Scholar
[3]
G. B. Kim, S. Lee, H. Kim, D. H. Yang, Y. H. Kim, Y. S. Kyun, S.U. Kwon, Three-dimensional printing: basic principles and applications in medicine and radiology, Korean journal of radiology 17 (2) (2016) 182-197.
DOI: 10.3348/kjr.2016.17.2.182
Google Scholar
[4]
A. Liu, G. H. Xue, M. Sun, H. F. Shao, C. Y. Ma, Q. Gao, Y. He, 3D printing surgical implants at the clinic: an experimental study on anterior cruciate ligament reconstruction, Scientific reports 6 (2016) 21704.
DOI: 10.1038/srep21704
Google Scholar
[5]
M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarašiene, R. Sirmenis, A. Žukauskas, A. Piskarskas, In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers, Appl. Phys. A 108 (3) (2012) 751-759.
DOI: 10.1007/s00339-012-6965-8
Google Scholar
[6]
A. V. Do, B. Khorsand, S. M. Geary, A. K. Salem, 3D printing of scaffolds for tissue regeneration applications, Advanced healthcare materials 4 (12) (2015) 1742-1762.
DOI: 10.1002/adhm.201500168
Google Scholar
[7]
T. Serra, M.A. Mateos-Timoneda, J.A. Planell, M. Navarro, 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine, Organogenesis 9 (4) (2013) 239-244.
DOI: 10.4161/org.26048
Google Scholar
[8]
M. Malinauskas, S. Rekštyte, L. Lukoševicius, S. Butkus, E. Balciunas, M. Peciukaityte, D. Baltriukiene, S. Juodkazis, 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation, Micromachines 5 (4) (2014) 839-858.
DOI: 10.3390/mi5040839
Google Scholar
[9]
D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J Tissue Eng Regen Med 1 (2007) 245-260.
DOI: 10.1002/term.24
Google Scholar
[10]
P. Dudek, FDM 3D printing technology in manufacturing composite elements, Arch Metall Mater. 58 (4) (2013) 1415-1418.
DOI: 10.2478/amm-2013-0186
Google Scholar
[11]
J. Chu, S. Engelbrecht, G. Graf, A comparison of synthesis methods for cellular structures with application to additive manufacturing, Rapid Prototype Journal 16 (4) (2010) 275-283.
DOI: 10.1108/13552541011049298
Google Scholar
[12]
R. Singh, R. Kumar, I. Farina, M. De Piano, A. Amendola, F. Fraternali, Mechanical and experimental study on the use of sustainable materials for additive manufacturing, IOP Conference Series: Materials Science and Engineering 473 (1) (2019) № 012010.
DOI: 10.1088/1757-899x/473/1/012010
Google Scholar
[13]
S.-Y.Gao, Y.-H. Li, Y.-F. Zhou, X. Lu, Q. Dong, B. Wang, J.-M. Zhao, Y.-C. Xiao, Mechanical properties experiment of 3D printing forming specimens with fused deposition modeling (FDM), Journal of Plasticity Engineering 24 (1) (2017) 200-206.
Google Scholar
[14]
M. Malinauskas, E. Skliutas, L. Jonušauskas, D. Mizeras, A. Šešok, A. Piskarskas, Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture, Proc. SPIE 9505, Quantum Optics and Quantum Information Transfer and Processing (2015) № 95050P.
DOI: 10.1117/12.2178515
Google Scholar
[15]
F. Zhao, D. Li, Z. Jin, Effect of PEEK fused deposition modeling temperature on tensile properties of parts, Electromachining & Mould (5) (2015) 43-47.
Google Scholar
[16]
I. Durrgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyping Journal 20 (3) (2014) 228-235.
DOI: 10.1108/rpj-10-2012-0091
Google Scholar
[17]
N.V.S.S. Sagar, K.S. Vepa, Experimental investigations for improving the strength of parts manufactured using FDM process, Lecture Notes in Mechanical Engineering (2019) 307-313.
DOI: 10.1007/978-981-13-2697-4_34
Google Scholar
[18]
M. Navarro, M.P. Ginebra, J.A. Planell, C.C. Barrias, M.A. Barbosa, In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass, Acta Biomater 1 (2005) 411-419.
DOI: 10.1016/j.actbio.2005.03.004
Google Scholar
[19]
A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal 9 (4) (2003) 252-264.
DOI: 10.1108/13552540310489631
Google Scholar
[20]
Y. Song, Y. Li, W. Song, K. Yee, K.-Y. Lee, V.L. Tagarielli, Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials and Design 123 (2017) 154-164.
DOI: 10.1016/j.matdes.2017.03.051
Google Scholar
[21]
O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Materials and Manufacturing Processes 15 (1) (2000) 107-122.
DOI: 10.1080/10426910008912976
Google Scholar
[22]
T. Letcher, M. Waytashek, Material property testing of 3d-printed specimen in PLA on an entry-level 3d printer, International Mechanical Engineering Congress and Exposition (2014).
DOI: 10.1115/imece2014-39379
Google Scholar
[23]
S. Perepelkina, P. Kovalenko, R. Pechenko, K. Makhmudova, Investigation of friction coefficient of various polymers used in rapid prototyping technologies with different settings of 3D printing, Tribology in Industry 39 (4) (2017) 519-526.
DOI: 10.24874/ti.2017.39.04.11
Google Scholar
[24]
Information on https://www.shimadzu.com/an/industry/petrochemicalchemical/i215.html.
Google Scholar
[25]
ISO standard 1926:2009. Rigid cellular plastics - Determination of tensile properties, (2009).
Google Scholar
[26]
Information on https://www.ssi.shimadzu.com/products/universal-tensile-testing/index.html.
Google Scholar
[27]
Information on http://www.flirmedia.com/MMC/CVS/Appl_Stories/AS_0015_EN.pdf.
Google Scholar