Investigation of Thermal Fields at Phase Boundaries in Powder Mixtures that are Subject to Melting and Chemical Transformation

Article Preview

Abstract:

An important part of the process of parts hardening by the induction surfacing method is the heating of hard alloy particles and flux in charge mixture. The article describes comprehensive studies on measurement and simulation of temperatures at phase boundaries in complex melting and heat-sensitive powder mixtures. To record the temperature in the induction surfacing process, it is proposed to apply CA micro-thermocouple method and the thermal indication method using SHS compositions. The developed methods for complex temperature recording in the process of induction surfacing allow to determine the melting temperature of the charge mixture and its single components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1011-1015

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. R. Davis, Surface engineering for corrosion and wear resistance, Materials Park, OH, USA, ASM International and IOM Communications, Maney Publishing, (2001).

Google Scholar

[2] E. J. Mittemeijer, M. A. J. Somers, Thermochemical surface engineering of steels, Elsevier, Woodhead Publishing, Cambridge, (2014).

Google Scholar

[3] E. Medvedovski, J. Jiang, M. Robertson, Boride-based coatings for protection of cast iron against wear, Adv. Appl. Ceram. 115(8) (2016) 483–494.

DOI: 10.1080/17436753.2016.1195527

Google Scholar

[4] J. Takadoum, Materials and surface engineering in tribology, ISTE, John Wiley & Sons, London, (2008).

Google Scholar

[5] K. N. Strafford, Tribological properties of coatings - expectations, performance and the design di6lemma, Surf Coat. Technol. 81 (1996) 106-117.

Google Scholar

[6] S. Hogmark, S. Jakobson, M. Larsson, Design and evaluation of tribological coatings, Wear. 246 (2000) 20-33.

DOI: 10.1016/s0043-1648(00)00505-6

Google Scholar

[7] B. R. Marple, R. S. Lima, Engineering nanostructured thermal spray coatings: process - property - performance relationships of ceramic based materials, Adv. Appl. Ceram., 106 (2007) 265-275.

DOI: 10.1179/174367607x202591

Google Scholar

[8] K. L. Choy, Chemical vapor deposition ofcoatings, Progr. Mater. Sci., 48 (2000) 57-170.

Google Scholar

[9] U. Sen, S. Sen, F. Yilmaz, An evaluation of some properties of borides deposited on boronized ductile iron, J Mater Process Tech. 148 (2004) 1–7.

DOI: 10.1016/j.jmatprotec.2004.01.015

Google Scholar

[10] S. Sen, U. Sen, C. Bindal, Tribological properties of oxidised boride coatings grown on AISI 4140 steel, Mater Lett. 60 (2006) 3481–3486.

DOI: 10.1016/j.matlet.2006.03.036

Google Scholar

[11] S. Taktak, Tribological behaviour of borided bearing steels at elevated temperatures, Surf Coat Tech. 201 (2006) 2230–2239.

DOI: 10.1016/j.surfcoat.2006.03.032

Google Scholar

[12] C. Meric, S. Sahin, B. Backir, Investigation of the boronizing effect on the abrasive wear behavior in cast irons, Mater Des. 27 (2006) 751–757.

DOI: 10.1016/j.matdes.2005.01.018

Google Scholar

[13] C. Martini, G. Palombarini, G. Poli, Sliding and abrasive wear behaviour of boride coatings, Wear. 256 (2004) 608–613.

DOI: 10.1016/j.wear.2003.10.003

Google Scholar

[14] R. S. Petrova, N. Suwattananont, V. Samardzic, The effect of boronizing on metallic alloys for automotive applications, J Mater Eng Perform. 17 (2008) 340–345.

DOI: 10.1007/s11665-008-9228-2

Google Scholar

[15] B. Selçuk, R. Ipek, M. B. Karamis, A study on friction and wear behaviour of carburized, carbonitrided and borided AISI 1020 and 5115 steels, J Mater Process Tech. 141 (2003) 189–196.

DOI: 10.1016/s0924-0136(02)01038-5

Google Scholar

[16] E. Atık, U. Yunker, C. Meric, The effects of conventional heat treatment and boronizing on abrasive wear and corrosion of SAE 1010, SAE 1040, D2 and 304 steels, Tribol Int. (36) 2003 155–161.

DOI: 10.1016/s0301-679x(02)00069-5

Google Scholar

[17] U. Yapar, C.F. Arisoy, G. Basman, Influence of boronizing on mechanical properties of EN-C35E steel, Key Eng Mat. 264 (2004) 633–636.

DOI: 10.4028/www.scientific.net/kem.264-268.629

Google Scholar

[18] M. Ulutan, O. N. Celik, M. M. Yildirim, Tribological properties of borided AISI 4140 steel with the powder pack-boriding method, Tribol Lett. 38 (2010) 231–239.

DOI: 10.1007/s11249-010-9597-1

Google Scholar

[19] E E Vera Cárdenas, R. Lewis, Characterization and wear performance of boride phases over tool steel substrates, Adv. Mech. Eng. 8 (2016) 1-11.

Google Scholar

[20] A. Tukmakova, A. Novotelnova, K. Samusevich, Simulation of Field Assisted Sintering of Silicon Germanium Alloys, Mater., 12 (2019) 570-578.

DOI: 10.3390/ma12040570

Google Scholar

[21] H. Zhang, X. Qi, Heat Transfer Analysis and Modification of Thermal Probe for Gas-Solid Measurement, Math. Prob. Eng. Volume 2016 (2016) 1-7.

Google Scholar

[22] I. K. Gimaltdinov, T. M. Levina, M. V. Stolpovskii, D. B. Solovev, Dynamics of the Localized Pulse in Bubbly Liquid. IOP Conference Series: Materials Science and Engineering. 463 (2018) Paper № 022002. [Online]. Available: https://doi.org/10.1088/1757-899X/463/2/022002.

DOI: 10.1088/1757-899x/463/2/022002

Google Scholar