[1]
Y.L. Vorob'yov, V.A. Akimov, Y.I. Sokolov, Sistemnyye avarii i katastrofy v tekhnosfere Rossii, FGBU VNII GOCHS (FTS), Moscow, (2012).
Google Scholar
[2]
A.B. Arabey, Development of technical requirements for metal pipes of gas pipelines, Chernaya metallurgiya. 7 (2010) 3-10.
Google Scholar
[3]
V.M. Kushnarenko, Y.A. Chirkov, K.N. Materinko, A.V. Lukashov, D.N. Shchepinov, Methods for residual life predicting of hazardous production facilities, Mashinostroyeniye i mashinovedeniye, Intellekt. Innovatsii. Investitsii. 7 (2016) 177-123.
Google Scholar
[4]
V.V. Shaydakov, K.V. Chernova, Operational changes in the properties of pipe steel in oil production, Ekspozitsiya neft gaz. 58 (2017) 84-86.
Google Scholar
[5]
E.Y. Priymak, A.P. Phot, A.V. Stepanchukova, Analysis of accidental damage to exploration drill pipes during operation, Voprosy materialovedeniya. 89 (2017) 187-194.
Google Scholar
[6]
V.V. Kluev, B.V. Artemiev, V.I. Matveev, State and development of technical diagnostics methods, Zavodskaya laboratoriya. 81 (2015) 73-78.
Google Scholar
[7]
N.P. Aleshin, The possibilities of non-destructive testing methods in assessing the stress-strain state of loaded metal structures, Svarka i Diagnostika. 6 (2011) 44 – 47.
Google Scholar
[8]
Raschety i ispytaniya na prochnost. Metod rentgenostrukturnogo analiza izlomov. Opredeleniye glubiny zon plasticheskoy deformatsii pod poverkhnost'yu razrusheniya, R 50-54-52-88, Vsesoyuznyy nauchno – issledovatel'skiy institut po normalizatsii v mashinostroyenii, Moscow, (1988).
Google Scholar
[9]
V.P. Gulyaev, P.P. Petrov, K.V. Stepanova, Diagnostics of critical states of constructions operated under low temperature conditions, Polar Mechanics 2018, IOP Publishing, IOP Conf. Series: Earth and Environmental Science. 193 (2018) 012015.
DOI: 10.1088/1755-1315/193/1/012015
Google Scholar
[10]
N.A. Koneva, S.F. Kiseleva, N.A. Popova, E.V. Kozlov, Distribution of excess dislocation density during deformation of austenitic steel, Izvestiya RAN. 79 (2015) 1311 - 1313.
DOI: 10.3103/s1062873815090129
Google Scholar
[11]
P.A. Ershov, S.M. Kuznetsov, I.I. Snigireva, V.A. Yunkin, A.Y. Goyhman, A.A. Snigirev, High-resolution X-ray diffractometry using one-dimensional and two-dimensional refracting lenses, Poverkhnost. 6 (2015) 55–59.
Google Scholar
[12]
E.M. Grinberg, A.A. Alexeeva, S.G. Sheverev, Changes in the fine structure during low-temperature decomposition of martensite of hardened medium-carbon steel, Voprosy materialovedeniya. 86 (2016) 20-25.
Google Scholar
[13]
V.A. Grishin, Using the characteristics of diffraction lines of deformed metal materials in assessing the durability of structural elements, Dissertation, NGTU, Nizhniy Novgorod, (1994).
Google Scholar
[14]
E.I. Kosarina, O.A. Krupnina, A.A. Demidov, E.M. Turbin, Digital radiography in non-destructive testing of aircraft, Aviatsionnye materialy i technologii. 5 (2017) 562-574.
Google Scholar
[15]
A.P. Kolikov, A.V. Lyutsau, N.L. Lisunets, V.I. Gkadkov, N.F. Shpunkin, The effect of residual stresses on the quality of products during cold processing of sheet blanks, Izvestiya MGTU MAMI. 12 (2011) 139-144.
DOI: 10.17816/2074-0530-69927
Google Scholar
[16]
A.E. Blagov, Features of X-ray diffraction by crystals modulated by low-frequency ultrasonics, Dissertation, Crys RAS, Moscow, (2006).
Google Scholar
[17]
A.V. Kotelkin, I.G. Roberov, D.B. Matveev, I.S. Lednev, Detecting of residual life and methods to increase the level of safety in the operation of structural materials in aviation, Sovremennye materialy, technika i technologii. 4 (2016) 104-113.
Google Scholar
[18]
E.O. Kile, V.V. Korchevskiy, A.V. Syuy, Effect of equipment errors of an X-ray diffractometer on the width of the diffraction line, Fundamentalnye problemy sovremennogo materialovedeniya. 8 (2011) 7-10.
Google Scholar
[19]
V.V. Korchevskiy, E.A. Zhukov, E.O. Kile, A.V. Syuy, Elimination of systematic errors in measuring the width of diffraction lines by numerical methods, Vestnik TOGU. 24 (2012) 17-22.
Google Scholar
[20]
D.M. Levin, M.V. Bulavin, S.A. Kulikov, The study of residual stresses and textures in the walls of steel pipes by neutron stress diffractometry, Izvestiya Tulskogo GU. 2 (2013) 194-206.
Google Scholar
[21]
N. I. Tchernyshev, O. E. Sysoev, D. B. Solovev, E. P. Kiselyov, Basic Robotecnical Platform for Implementation of Accurate Farming Technologies. Bulletin of Electrical Engineering and Informatics (BEEI). 7(4) (2018) 522-528. [Online]. Available: http://dx.doi.org/10.11591/eei.v7i4.920.
DOI: 10.11591/eei.v7i4.920
Google Scholar