[1]
T. Zhang, and D.Y. Li, Modification of 27Cr Cast Iron with Alloying Yttrium for Enhanced Resistance to Sliding Wear in Corrosive Media, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33(7) (2002).
DOI: 10.1007/s11661-002-0031-7
Google Scholar
[2]
S.S. Banadkouki, S. Mehranfar, Wear Behavior of a Modified Low Alloy as Cast Hardening White Iron, ISIJ International. 52 (11) (2012) 2096-2099.
DOI: 10.2355/isijinternational.52.2096
Google Scholar
[3]
M.M. Atabaki, S. Jafari, H. Abdollah-pour, Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-A Comparison, Journal of Iron and Steel Research International. 19(4) (2012) 43-50.
DOI: 10.1016/s1006-706x(12)60086-7
Google Scholar
[4]
Ye.F.M. Hojamberdiev, Y.Xu.L. Zhong, H. Yan, and Z. Chen, (Fe,Cr)7C3/Fe Surface Gradient Composite: Microstructure, Microhardness, and Wear Resistance, Materials Chemistry and Physics. 147 (3) (2014).
DOI: 10.1016/j.matchemphys.2014.06.026
Google Scholar
[5]
L.B. Niu, Y.H. Xu, H. Wu, W. Wang, Preparation of in situ (Fe,Cr)7C3/Fe composite coating by centrifugal casting, (2010) Surf. Eng., pp.1-4.
Google Scholar
[6]
A.A. Zhukov, G.I. Silman, M.S. Froltsov, Wear-resistant castings from complex-alloyed white cast irons, Mashinostroenie, Moscow, (1984).
Google Scholar
[7]
J. Wang, C. Li, H. Liu, H. Yang, B. Shen, S. Gao, and S. Huang, The Precipitation and Transformation of Secondary Carbides in a High Chromium Cast Iron, Materials Characterization. 56 (1) (2006) 73-78.
DOI: 10.1016/j.matchar.2005.10.002
Google Scholar
[8]
A. Bedolla-Jacuinde, B. Hernández, and L. Béjar-Gómez, SEM Study on the M7C3 Carbide Nucleation during Eutectic Solidification of High-Chromium White Irons, Zeitschrift Fuer Metallkunde/Materials Research and Advanced Techniques. 96 (12) (2005) 1380-1385.
DOI: 10.3139/146.101188
Google Scholar
[9]
M. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Materials and Design. 47(2013) 41-48.
DOI: 10.1016/j.matdes.2012.12.034
Google Scholar
[10]
X. Zhi, J. Xing, H. Fu, and B. Xiao, Effect of Niobium on the as-Cast Microstructure of Hypereutectic High Chromium Cast Iron, Materials Letters. 62 (6-7) (2008) 857-860.
DOI: 10.1016/j.matlet.2007.06.084
Google Scholar
[11]
D.–N. Zou, H.-G. Fu, Influence of Ce, K, and Na on Spheroidization of Eutectic Carbides in Low-Tungsten White Cast Iron, Zeitschrift Fuer Metallkunde/Materials Research and Advanced Techniques. 96 (11) (2005) 1328-1331.
DOI: 10.3139/146.101183
Google Scholar
[12]
Y.-C. Zhao, P.-C Zhu, and F.-H Sun, Influence of Rare Earth-La on Mechanical Properties of High Chromium Cast-Iron, Zhuzao/Foundry. 64 (7) (2015) 692-693 and 698.
Google Scholar
[13]
K.-K Wang, R.-F Wang, R.-R Wu, and G. Yang, Effect of RE-mg on the Properties and Microstructure of High Chromium White Cast Iron, Zhuzao/Foundry. 67 (3) (2018) 248-251 and 256.
Google Scholar
[14]
F. Tehovnik, M. Doberšek, B. Arh, B. Koroušič, D. Kmetič, and V. Dunat, The Influence of Rare-Earth Elements on Nonmetallic Inclusions and Microstructure of High-Chromium White Cast Iron, Metalurgija. 44 (3) (2005) 163-168.
Google Scholar
[15]
State Standard 4757-91, Ferrochromium, Specification and conditions of delivery, Moscow, Standartinform Publ., (1991).
Google Scholar
[16]
Technical Specifications 48-4-208-72, Yttrium, Technical specifications, manufacturer, M-5998, (1973).
Google Scholar
[17]
J.I. Goldstein, D. Newbury, Scanning electron microscopy and x-ray microanalysis, third ed., Kluwer Academic, (2003).
Google Scholar
[18]
J. Adam, Schwartz, Mukul Kumar, Electron backscatter diffraction in materials science, second ed., Springer, New York, (2000).
Google Scholar
[19]
Pierre Villars, Cementite (Fe3C ht cem), information on http://materials.springer.com/isp/crystallographic/docs/sd_1623041.
Google Scholar
[20]
Pierre Villars, (Cr,Fe)7C3 (Cr3.5Fe3.5C3 rt), information on http://materials.springer.com/isp/crystallographic/docs/sd_1413617.
Google Scholar