[1]
G. Lai, High Temperature Corrosion and Materials Application (USA: ASM International), 2007, p.461.
Google Scholar
[2]
V.G. Shmorgun, O.V. Slautin, D.V. Pronichev, V.P. Kulevich, Study of high-temperature heating effect on transformation of structure and phase composition of coatings of Al-Fe system, IOP Conference Series: Earth and Environmental Science, IOP Publishing. 87(9) (2017) 092025.
DOI: 10.1088/1755-1315/87/9/092025
Google Scholar
[3]
K.G. Field, M.A. Snead, Y. Yamamoto, K.A. Terrani, Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications, USA: Oak Ridge National Lab, Oak Ridge, TN, 2017, № ORNL/TM-2017/186.
DOI: 10.2172/5546832
Google Scholar
[4]
R.B. Rebak, K.A. Terrani, W.P. Gassmann, J.B. Williams and K.L. Ledford, Improving nuclear power plant safety with FeCrAl alloy fuel cladding, MRS Advances. 2(21-22) (2017) 1217-1224.
DOI: 10.1557/adv.2017.5
Google Scholar
[5]
T. Sarikka, R. Ilola, R. Pohja, H. Hänninen, Corrosion resistance of Kanthal A-1 and Fe-12Cr-2Si alloy coatings in Cl-containing environment, Conference: Baltica IX-International Conference on Life Management and Maintenance for Power Plants Volume: VTT Research Highlights 106-Technology (2013).
Google Scholar
[6]
R.H. Alloys, Kanthal® Handbook Heating Alloys for Electric Household Appliances, Sweden TM, 2001, p.28.
Google Scholar
[7]
Z.D. Xiang et al., Steam oxidation resistance of Ni-aluminide/Fe-aluminide duplex coatings formed on creep resistant ferritic steels by low temperature pack cementation process, Corrosion Science. 53(1) (2011) 496-502.
DOI: 10.1016/j.corsci.2010.09.064
Google Scholar
[8]
Y. Zhang et al. Interdiffusion Behavior in Aluminide Coatings for Power Generation Applications. Tennessee Technological University, Cookeville, TN (US); Oak Ridge National Lab., Oak Ridge, TN (US), (2003).
DOI: 10.2172/661505
Google Scholar
[9]
T.C. Winter, et al., Fretting wear comparison of cladding materials for reactor fuel cladding application, Journal of Nuclear Materials. 508 (2018) 505-515.
DOI: 10.1016/j.jnucmat.2018.05.069
Google Scholar
[10]
L. Da Silva, M. Samuel, L.F. Carlos ,Thin films of kanthal and aluminum for electromagnetic wave absorption, Journal of Nano Research, 14 (2011).
DOI: 10.4028/www.scientific.net/jnanor.14.155
Google Scholar
[11]
M.A. Abro, B.L. Dong, High temperature corrosion of hot-dip aluminized steel in Ar/1% SO2 gas, Metals and Materials International. 23(1) (2017) 92-97.
DOI: 10.1007/s12540-017-6366-9
Google Scholar
[12]
V.G. Shmorgun, A.I. Bogdanov, O.V. Slautin, V.P. Kulevich, Aluminizing of the Cr15Al5 alloy surface by hot-dipping in the melt, In IOP Conference Series: Materials Science and Engineering. 537(2) (2019) 022069.
DOI: 10.1088/1757-899x/537/2/022069
Google Scholar
[13]
State Standard 12766.1-90, Wire of high electric resistance precision alloys, Specifications, Moscow, Standartinform Publ., 1996. 63 p.
Google Scholar
[14]
R. Prescott, M. J. Graham, The oxidation of iron-aluminum alloys, Oxidation of Metals. 38(1-2) (1992) 73-87.
DOI: 10.1007/bf00665045
Google Scholar
[15]
E. Nurmi et al., Assessing the elastic properties and ductility of Fe–Cr–Al alloys from ab initio calculations, Philosophical Magazine. 96.2 (2016) 122-133.
DOI: 10.1080/14786435.2015.1119906
Google Scholar
[16]
J. Engkvist et al., High temperature oxidation of FeCrAl‐alloys–influence of Al‐concentration on oxide layer characteristics, Materials and corrosion. 60(11) (2009) 876-881.
DOI: 10.1002/maco.200805186
Google Scholar
[17]
Y-P. Xu, et al., Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming FeCrAl ferritic steel, Journal of Nuclear Materials. 477 (2016) 257-262.
DOI: 10.1016/j.jnucmat.2016.04.054
Google Scholar
[18]
J. Ejenstam, et al., Microstructural stability of Fe–Cr–Al alloys at 450–550°C, Journal of Nuclear Materials. 457 (2015) 291-297.
DOI: 10.1016/j.jnucmat.2014.11.101
Google Scholar
[19]
H.M. Heinonen, et al., Initial oxidation of Fe–Al and Fe–Cr–Al alloys: Cr as an alumina booster, Oxidation of metals. 76(3-4) (2011) 331.
DOI: 10.1007/s11085-011-9258-2
Google Scholar
[20]
E. Airiskallio, et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element, Corrosion Science. 52(10) (2010) 3394-3404.
DOI: 10.1016/j.corsci.2010.06.019
Google Scholar