[1]
T. Debroy, H.L. Wei, J.S. Zuback, et al., Additive manufacturing of metallic components – Process, structure and properties, Mater. Sci. Eng. 92 (2018) 112-224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[2]
S. Gorsse, C. Hutchinson, M. Gouné, R. Banerjee, Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys, Sci Technol Adv Mater. 18(1) (2017) 1-27.
DOI: 10.1080/14686996.2017.1361305
Google Scholar
[3]
J. Byun, J. Park, S. Cho, A Study on Mechanical Properties in Additive Manufacturing of Ti Alloy with TIG Welding, IWJC-Korea 2017. (2017) 0-1.
Google Scholar
[4]
A. Basak, S. Das. Epitaxy and Microstructure Evolution in Metal Additive Manufacturing, Annual Review of Materials Research. 46 (2016) 125-149.
DOI: 10.1146/annurev-matsci-070115-031728
Google Scholar
[5]
J. Günther, F. Brenne, M. Droste, et al., Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance, Sci. Rep. 8 (2018) 1-14.
DOI: 10.1038/s41598-018-19376-0
Google Scholar
[6]
Z. Wang, T.A. Palmer, A.M. Beese, Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing, Acta Mater. 110 (2016) 226–35.
DOI: 10.1016/j.actamat.2016.03.019
Google Scholar
[7]
W. Ge, F. Lin, C. Guo, Functional Gradient Material of Ti-6Al-4V And γ-TiAl Fabricated by Electron Beam Selective Melting, Solid freeform fabrication symposium. (2015) 602-613.
Google Scholar
[8]
W.P. Liu, J.N. DuPont, Fabrication of functionally graded TiC/Ti composites by Laser Engineered Net Shaping, Scripta Mater. 48(9) (2003) 1337–1342.
DOI: 10.1016/s1359-6462(03)00020-4
Google Scholar
[9]
S.Y. Tarasov, A.V. Filippov, N.L. Savchenko, S.V. Fortuna, V.E. Rubtsov, E.A. Kolubaev, S.G. Psakhie, Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel, International Journal of Advanced Manufacturing Technology. 99 (9-12) (2018) 2353-2363.
DOI: 10.1007/s00170-018-2643-0
Google Scholar
[10]
A.V. Kolubaev, S.Y. Tarasov, A.V. Filippov, Y.A. Denisova, E.A. Kolubaev, A.I. Potekaev, The Features of Structure Formation in Chromium-Nickel Steel Manufactured by a Wire-Feed Electron Beam Additive Process, RUPJ. 61 (8) (2018) 1491-1498.
DOI: 10.1007/s11182-018-1561-9
Google Scholar
[11]
S.Y. Tarasov, A.V. Filippov, N.N. Shamarin, S.V. Fortuna, G.G. Maier, E.A. Kolubaev, Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel, J. Alloys Compd. 803 (2019) 364-370.
DOI: 10.1016/j.jallcom.2019.06.246
Google Scholar
[12]
C.L. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, M.M., Attallah, Fabrication of large Ti–6Al–4V structures by direct laser deposition, J Alloy Comp. 629 (2015) 351–361.
DOI: 10.1016/j.jallcom.2014.12.234
Google Scholar
[13]
S.Y. Zhang, X. Lin, J. Chen, W.D. Huang, Heat-treated microstructure and mechanical properties of laser solid forming Ti-6Al-4V alloy, Rare Met. 28 (6) (2009) 537–44.
DOI: 10.1007/s12598-009-0104-5
Google Scholar
[14]
G.P. Dinda, L. Song, J. Mazumder, Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition, Metall Mater Trans A. 39 (12) (2008) 2914–2922.
DOI: 10.1007/s11661-008-9634-y
Google Scholar
[15]
P. Edwards, A. O'Conner, M. Ramulu, Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance, J Manuf Sci Eng. 135(6) (2013) 061016.
DOI: 10.1115/1.4025773
Google Scholar
[16]
X.L. Zhao, S.J. Li, M. Zhang, et al., Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting, Mater Des. 95 (2016) 21–31.
DOI: 10.1016/j.matdes.2015.12.135
Google Scholar
[17]
J. Fessler, A. Nickel, G. Link, F. Prinz, P. Fussell, Functional Gradient Metallic Prototypes through Shape Deposition Manufacturing, Proceedings of the solid freeform fabrication symposium. Austin (TX): University of Texas at Austin. (1997) 521–528.
Google Scholar
[18]
B.E. Carroll, R.A. Otis, J.P. Borgonia, et al., Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition, Acta Mater. 108 (2016) 46–54.
DOI: 10.1016/j.actamat.2016.02.019
Google Scholar
[19]
U. Articek, M. Milfelner, I. Anzel, Synthesis of functionally graded material H13/Cu by LENS technology, Adv Product Eng Manage. 8(3) 2013 169–176.
DOI: 10.14743/apem2013.3.164
Google Scholar
[20]
F.J. Kahlen, A. von Klitzing, A. Kar, Hardness, chemical, and microstructural studies for laser-fabricated metal parts of graded materials, J Laser Appl. 12(5) (2000) 205–209.
DOI: 10.2351/1.1309552
Google Scholar