[1]
V.M. Lipkin, Y.M. Berezhnoi, M.S. Lipkin, Effect of substrate nature and electrolysis modes on ultramicron and nanosized electrolytic powders formation regularities, Materials Science Forum. 843 (2016) 22-27.
DOI: 10.4028/www.scientific.net/msf.843.22
Google Scholar
[2]
A. Łukomska, A. Plewka & P. Łoś, Shape and size controlled fabrication of copper nanopowders from industrial electrolytes by pulse electrodeposition. Journal of Electroanalytical Chemistry. 637(1-2) (2009) 50–54.
DOI: 10.1016/j.jelechem.2009.09.029
Google Scholar
[3]
J. Szymanowski, Copper hydrometallugry and extraction from chloride media, Volume 208 (1996), 183–194.
DOI: 10.1007/bf02039759
Google Scholar
[4]
R.C. Newman, T. Shahrabi & K.Sieradzki, Direct electrochemical measurement of dezincification including the effect of alloyed arsenic. Corrosion Science. 28(9) (1988) 873–886.
DOI: 10.1016/0010-938x(88)90036-4
Google Scholar
[5]
D.K. Sarkar, X.J. Zhou, A. Tannous, & K.T. Leung, Growth Mechanisms of Copper Nanocrystals on Thin Polypyrrole Films by Electrochemistry, The Journal of Physical Chemistry B. 107(13) (2003) 2879–2881.
DOI: 10.1021/jp0269524
Google Scholar
[6]
H. Natter, & R. Hempelmann, Nanocrystalline Copper by Pulsed Electrodeposition: The Effects of Organic Additives, Bath Temperature, and pH. The Journal of Physical Chemistry. 100(50) (1996) 19525–19532.
DOI: 10.1021/jp9617837
Google Scholar
[7]
J.L. Limpo, J.M. Figueiredo, S. Amer, & A. Luis, The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions, Hydrometallurgy, 28(2) (1992)149–161.
DOI: 10.1016/0304-386x(92)90127-l
Google Scholar
[8]
Z. Wang, X. Cai, C. Yang, L. Zhou, & C. Hu, An electrodeposition approach to obtaining carbon nanotubes embedded copper powders for the synthesis of copper matrix composites, Journal of Alloys and Compounds. 735 (2018) 1357–1362.
DOI: 10.1016/j.jallcom.2017.11.255
Google Scholar
[9]
Z. Sun, H. Cao, P. Venkatesan, W. Jin, Y. Xiao, J. Sietsma, & Y. Yang, Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions, Frontiers of Chemical Science and Engineering. 11(3) (2016) 308–316.
DOI: 10.1007/s11705-016-1587-x
Google Scholar
[10]
N. Naseri Joda, & F. Rashchi, Recovery of ultra fine grained silver and copper from PC board scraps, Separation and Purification Technology. 92(2012) 36–42.
DOI: 10.1016/j.seppur.2012.03.022
Google Scholar
[11]
V.M. Lipkin, M.S. Lipkin, & V.I. Lachin, The Mechanism of Water-Soluble Polymer Аdditives and Parameters of the Pulse Electrolysis Effect on the Size Distribution of the Electrolytic Copper Powder, Materials Science Forum. 870(2016) 636–641.
DOI: 10.4028/www.scientific.net/msf.870.636
Google Scholar
[12]
M.S. Lipkin, V.M. Lipkin, A.A. Naumenko, A.S. Misharev, F.R. Tulaeva, E.A. Rybalko, N.A. Lytkin, V.G. Shishka, A.N. Bogdanchenko, Synthesis of Metal Nano-Powders in Nonstationary Electrolysis, in: Proceeding of ECS Meeting Abstracts Cancun Mexico: Emerging nanomaterials and devices. (2014). URL: http://ma.ecsdl.org/content/ MA201402/38/1891.abstract?sid=4f135d9c-a263-4b25-9573-fd5d278fcc04.
DOI: 10.1149/ma2014-02/38/1891
Google Scholar
[13]
R.K. Nekouie, F. Rashchi, N.N. Joda, Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis, Powder. Technology. 237 (2013) 554-561.
DOI: 10.1016/j.powtec.2012.12.046
Google Scholar
[14]
M.G. Pavlović, J.L. Pavlović, I.D. Doroslovački, N.D. Nikolić, The effect of benzoic acid on the corrosion and stabilisation of electrodeposited copper powder, Hydrometallurgy. 73 (2004) 155-162.
DOI: 10.1016/j.hydromet.2003.08.005
Google Scholar
[15]
D. B. Solovev, A. Ya. Kardava, Analyzing Upcoming Trends in Development of Current Transducers for Automatic Equipment and Relay Protection: A Review. International Review of Electrical Engineering (IREE). 10(3) (2015) 381-389. [Online]. Available: http://dx.doi.org/10.15866/iree.v10i3.6253.
DOI: 10.15866/iree.v10i3.6253
Google Scholar