Development of Ultra-Fluid Compositions of Feedstock for Metal Injection Molding

Article Preview

Abstract:

In this paper, to reduce the cost of production of parts by injection molding technology of metal powder mixtures (MIM technology), it is proposed to use metal powder mixtures (feedstock) with high fluidity for the manufacture of green parts. High fluidity is achieved by increasing the proportion of paraffin wax in the binder. This can significantly reduce the pressing pressure when pressing the feedstock into the mold cavity to values less than 1 bar, and eliminate the use of expensive injection molding machines with high compression pressure. High fluidity also allows the use of powders with large particle sizes, which significantly reduces the cost of feedstock. The absence of high pressure on the mold walls during the pressing of the feedstock allows the use of molds made of cheaper materials such as silicone, plastic, gypsum and others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

529-533

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Donald, Heaney Handbook of metal injection molding - Woodhead Publishing Limited, 2012, 586 p.

Google Scholar

[2] C. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, C. Holzer, Effect of particle size on the properties of highly-filled polymers for fused filament fabrication, AIP Conf. Proc. 1914, 190006-1–190006-4, https://doi.org/10.1063/1.5016795.

DOI: 10.1063/1.5016795

Google Scholar

[3] R.A. Abdul Kadir, R. Razali, N.H. Mohamad Nor, I. Subuki and M.H. Ismail, The Effect of Particles Shape and Size on Feedstock Flowibility and Chemical content of As-sintered NiTi Alloys, IOP Conf. Series: Materials Science and Engineering 358 (2018) 012064.

DOI: 10.1088/1757-899x/358/1/012064

Google Scholar

[4] Keith Murray, Andrew J Coleman, Toby A. Tingskog & Donald T. Whychell, Sr Effect of Particle Size Distribution on Processing and Properties of MIM 17-4PH, International Journal of Powder Metallurgy, 47(4), July (2011).

Google Scholar

[5] M. Seerane, P. Ndlangamandla, R. Machaka, The influence of particle size distribution on the properties of metal-injection-moulded 17-4 PH stainless steel J. S. Afr. Inst. Min. Metall, vol.116, no.10, Johannesburg ,Oct. (2016).

DOI: 10.17159/2411-9717/2016/v116n10a7

Google Scholar

[6] R. Asmawi, M.H.I Ibrahim, A.M. Amin, N. Mustafa, Characterization of Stainless Steel 316L Feedstock for Metal Injection Molding (MIM) Using Waste Polystyrene and Palm Kernel Oil Binder System, IOP Conf. Series: Materials Science and Engineering, 160 (2016) 012062.

DOI: 10.1088/1757-899x/160/1/012062

Google Scholar

[7] J. Gonzalez-Gutierrez, I. Duretek, C. Kukla, A. Poljšak, M. Bek, I. Emri and C. Holzer, Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation, Metals 2016, 6, 129;.

DOI: 10.3390/met6060129

Google Scholar

[8] Sang June Park, Dongyeong Kim, Dongguo Lin, Seong Jin Park and Seokyoung Ahn, Rheological Characterization of Powder Mixture Including a Space Holder and Its Application to Metal Injection Molding, Metals 2017, 7, 120,.

DOI: 10.3390/met7040120

Google Scholar

[9] A.Yu. Korotchenko, D.E. Khilkov, M.V. Tverskoy, The Development of New Materials and Modes of Casting Metal Powder Mixtures (MIM Technology), FarEastСon - Materials and Construction, Materials Science Forum (vol. 945), February 2019, pp.538-542.

DOI: 10.4028/www.scientific.net/msf.945.538

Google Scholar

[10] K. Golombek, G. Matula, J. Mikula, M. Sokovic, Rheological properties of feedstocks and the structure of injection moulders for sintering composite tool materials based on mmcs, Materiali in tehnologije, Materials and technology 51 (2017) 1, 163–171.

DOI: 10.17222/mit.2015.318

Google Scholar

[11] Catamold® 316L, http://www.catamold.de/cm/internet/Catamold/en/content/Microsite/Catamold/Technische_Informationen/Catamold_Processing.

DOI: 10.1002/9783527809080.cataz03178

Google Scholar

[12] Ahmad Ridhwan Abdullah, Nur Aidah Nabihah Dandang, Nur Zalikha Khalil, Wan Sharuzi Wan Harun, Effect of sintering temperature on physical properties & hardness of CoCrMo alloys fabricated by metal injection moulding process, IOP Conf. Series: Materials Science and Engineering 257 (2017) 012010.

DOI: 10.1088/1757-899x/257/1/012010

Google Scholar

[13] N.A.N. Dandang, W.S.W. Harun, N.Z. Khali, A.H. Ahmad, F.R.M. Romlay, N.A. Johari, Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process, IOP Conf. Series: Materials Science and Engineering 257 (2017) 012020.

DOI: 10.1088/1757-899x/257/1/012020

Google Scholar

[14] M F F A Hamidi, W S W Harun, N Z Khali, S A C Ghani, M Z Azir, Study of solvent debinding parameters for metal injection moulded 316L stainless steel, IOP Conf. Series: Materials Science and Engineering, 257 (2017) 012035,.

DOI: 10.1088/1757-899x/257/1/012035

Google Scholar

[15] Sung-Hyun Choi, Sang-Dae Kang, Young Sam Kwon, Su Gun Lim, Kwon Koo Cho, In-Shup Ahn, The effect of sintering conditions on the properties of WC–10wt%Co PIM compacts, Research on Chemical Intermediates, (2010) 36, 743–748, DOI 10.1007/s11164-010-0176-8.

DOI: 10.1007/s11164-010-0176-8

Google Scholar

[16] K.F. Hens, S.T. Lin, R.M. German and D. Lee, The Effects of Binder on the Mechanical Properties of Carbonyl Iron Products, The Journal of The Minerals, Metals & Materials Society  1989 August, 17-21.

Google Scholar

[17] H. Abdoos, H. Khorsand, A.A. Yousefi, Torque rheometry and rheological analysis of powder–polymer mixture for aluminum powder injection molding, Iran Polym J (2014) 23, 745–755, DOI 10.1007/s13726-014-0268-1.

DOI: 10.1007/s13726-014-0268-1

Google Scholar

[18] H.O. Gulsoy, S. Salman, Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions, Journal of Materials Science 40 (2005) 3415 – 3421.

DOI: 10.1007/s10853-005-0432-2

Google Scholar

[19] S.T. Lin and R.M. German, Mechanical Properties of Fully Densified Injection-Molded Carbonyl Iron Powder, Metallurgical Transactions A Volume 21a, September 1990, р. 2531-2538.

DOI: 10.1007/bf02646998

Google Scholar

[20] J.R. Alcock, P.M. Logan, D. J. Stephenson, Metal co-injection moulding, Journal of Materials Science Letters 15 (1996) 2033-2035.

DOI: 10.1007/bf00278613

Google Scholar

[21] A.M. Amin, M.H.I. Ibrahim, M.Y. Hashim, O.M.F. Marwah, M.H. Othman, M.A. Johar, C.H. Ng, Green density optimization of stainless steel powder via metal injection molding by Taguchi method, MATEC Web of Conferences 135, 00038 (2017),.

DOI: 10.1051/matecconf/201713500038

Google Scholar

[22] X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, Journal of Materials Processing Technology 212 (2012) 2173– 2182.

DOI: 10.1016/j.jmatprotec.2012.05.023

Google Scholar