[1]
F. Donald, Heaney Handbook of metal injection molding - Woodhead Publishing Limited, 2012, 586 p.
Google Scholar
[2]
C. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, C. Holzer, Effect of particle size on the properties of highly-filled polymers for fused filament fabrication, AIP Conf. Proc. 1914, 190006-1–190006-4, https://doi.org/10.1063/1.5016795.
DOI: 10.1063/1.5016795
Google Scholar
[3]
R.A. Abdul Kadir, R. Razali, N.H. Mohamad Nor, I. Subuki and M.H. Ismail, The Effect of Particles Shape and Size on Feedstock Flowibility and Chemical content of As-sintered NiTi Alloys, IOP Conf. Series: Materials Science and Engineering 358 (2018) 012064.
DOI: 10.1088/1757-899x/358/1/012064
Google Scholar
[4]
Keith Murray, Andrew J Coleman, Toby A. Tingskog & Donald T. Whychell, Sr Effect of Particle Size Distribution on Processing and Properties of MIM 17-4PH, International Journal of Powder Metallurgy, 47(4), July (2011).
Google Scholar
[5]
M. Seerane, P. Ndlangamandla, R. Machaka, The influence of particle size distribution on the properties of metal-injection-moulded 17-4 PH stainless steel J. S. Afr. Inst. Min. Metall, vol.116, no.10, Johannesburg ,Oct. (2016).
DOI: 10.17159/2411-9717/2016/v116n10a7
Google Scholar
[6]
R. Asmawi, M.H.I Ibrahim, A.M. Amin, N. Mustafa, Characterization of Stainless Steel 316L Feedstock for Metal Injection Molding (MIM) Using Waste Polystyrene and Palm Kernel Oil Binder System, IOP Conf. Series: Materials Science and Engineering, 160 (2016) 012062.
DOI: 10.1088/1757-899x/160/1/012062
Google Scholar
[7]
J. Gonzalez-Gutierrez, I. Duretek, C. Kukla, A. Poljšak, M. Bek, I. Emri and C. Holzer, Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation, Metals 2016, 6, 129;.
DOI: 10.3390/met6060129
Google Scholar
[8]
Sang June Park, Dongyeong Kim, Dongguo Lin, Seong Jin Park and Seokyoung Ahn, Rheological Characterization of Powder Mixture Including a Space Holder and Its Application to Metal Injection Molding, Metals 2017, 7, 120,.
DOI: 10.3390/met7040120
Google Scholar
[9]
A.Yu. Korotchenko, D.E. Khilkov, M.V. Tverskoy, The Development of New Materials and Modes of Casting Metal Powder Mixtures (MIM Technology), FarEastСon - Materials and Construction, Materials Science Forum (vol. 945), February 2019, pp.538-542.
DOI: 10.4028/www.scientific.net/msf.945.538
Google Scholar
[10]
K. Golombek, G. Matula, J. Mikula, M. Sokovic, Rheological properties of feedstocks and the structure of injection moulders for sintering composite tool materials based on mmcs, Materiali in tehnologije, Materials and technology 51 (2017) 1, 163–171.
DOI: 10.17222/mit.2015.318
Google Scholar
[11]
Catamold® 316L, http://www.catamold.de/cm/internet/Catamold/en/content/Microsite/Catamold/Technische_Informationen/Catamold_Processing.
DOI: 10.1002/9783527809080.cataz03178
Google Scholar
[12]
Ahmad Ridhwan Abdullah, Nur Aidah Nabihah Dandang, Nur Zalikha Khalil, Wan Sharuzi Wan Harun, Effect of sintering temperature on physical properties & hardness of CoCrMo alloys fabricated by metal injection moulding process, IOP Conf. Series: Materials Science and Engineering 257 (2017) 012010.
DOI: 10.1088/1757-899x/257/1/012010
Google Scholar
[13]
N.A.N. Dandang, W.S.W. Harun, N.Z. Khali, A.H. Ahmad, F.R.M. Romlay, N.A. Johari, Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process, IOP Conf. Series: Materials Science and Engineering 257 (2017) 012020.
DOI: 10.1088/1757-899x/257/1/012020
Google Scholar
[14]
M F F A Hamidi, W S W Harun, N Z Khali, S A C Ghani, M Z Azir, Study of solvent debinding parameters for metal injection moulded 316L stainless steel, IOP Conf. Series: Materials Science and Engineering, 257 (2017) 012035,.
DOI: 10.1088/1757-899x/257/1/012035
Google Scholar
[15]
Sung-Hyun Choi, Sang-Dae Kang, Young Sam Kwon, Su Gun Lim, Kwon Koo Cho, In-Shup Ahn, The effect of sintering conditions on the properties of WC–10wt%Co PIM compacts, Research on Chemical Intermediates, (2010) 36, 743–748, DOI 10.1007/s11164-010-0176-8.
DOI: 10.1007/s11164-010-0176-8
Google Scholar
[16]
K.F. Hens, S.T. Lin, R.M. German and D. Lee, The Effects of Binder on the Mechanical Properties of Carbonyl Iron Products, The Journal of The Minerals, Metals & Materials Society 1989 August, 17-21.
Google Scholar
[17]
H. Abdoos, H. Khorsand, A.A. Yousefi, Torque rheometry and rheological analysis of powder–polymer mixture for aluminum powder injection molding, Iran Polym J (2014) 23, 745–755, DOI 10.1007/s13726-014-0268-1.
DOI: 10.1007/s13726-014-0268-1
Google Scholar
[18]
H.O. Gulsoy, S. Salman, Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions, Journal of Materials Science 40 (2005) 3415 – 3421.
DOI: 10.1007/s10853-005-0432-2
Google Scholar
[19]
S.T. Lin and R.M. German, Mechanical Properties of Fully Densified Injection-Molded Carbonyl Iron Powder, Metallurgical Transactions A Volume 21a, September 1990, р. 2531-2538.
DOI: 10.1007/bf02646998
Google Scholar
[20]
J.R. Alcock, P.M. Logan, D. J. Stephenson, Metal co-injection moulding, Journal of Materials Science Letters 15 (1996) 2033-2035.
DOI: 10.1007/bf00278613
Google Scholar
[21]
A.M. Amin, M.H.I. Ibrahim, M.Y. Hashim, O.M.F. Marwah, M.H. Othman, M.A. Johar, C.H. Ng, Green density optimization of stainless steel powder via metal injection molding by Taguchi method, MATEC Web of Conferences 135, 00038 (2017),.
DOI: 10.1051/matecconf/201713500038
Google Scholar
[22]
X. Kong, T. Barriere, J.C. Gelin, Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding, Journal of Materials Processing Technology 212 (2012) 2173– 2182.
DOI: 10.1016/j.jmatprotec.2012.05.023
Google Scholar