[1]
S.S. Kiparisov, G.A. Libenson, Powder metallurgy, Metallurgia, Moscow, (1991).
Google Scholar
[2]
V.V. Potapov, A.V. Tumanov, V.A. Gorbach, A.N. Kashutin, K.C. Shalevich, Comprehensive nanodispersal silicon dioxide supplementation to increase concrete strength, J. Сhemical technology. 7 (2013) 394-401.
Google Scholar
[3]
A.A. Rempel, Nanotechnology, properties and application of nanostructured materials, J. Success of chemistry. 76 (2007) 474-500.
Google Scholar
[4]
A.I. Gusev, Nanomaterials, nanostructures, Fizmatlit, Moscow, (2007).
Google Scholar
[5]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, J. Acta mater. 48 (2000) 11-29.
Google Scholar
[6]
R.A. Andrievsky, Nanomaterials Based on Refractory Carbides, Nitrides, and Borides, J. Success of chemistry. 74 (2005) 1163-1175.
Google Scholar
[7]
G.B. Sergeev, Nanochemistry, MGU, Moscow, (2003).
Google Scholar
[8]
V.N. Antsiferov, Nanopowders: preparation and properties. New materials, NIT, Moscow, (2002).
Google Scholar
[9]
Y.I. Gordeev, A.K. Abkaryan, A.A. Lepeshev, Influence of alloying ceramic nanoparticles additives on structural parameters and properties of hard alloys, J. Bulletin of the Academician M. F. Reshetnev Siberian State Aerospace University. 3 (2013) 174–181.
Google Scholar
[10]
E.A. Lednikov, M.V. Radchenko, L.B. Pervukhin, Nanoparticles as modifiers of powder mixture for supersonic gas-powder surfacing, J. Polzunovsky Bulletin. 1/1 (2012) 173-176.
Google Scholar
[11]
V.V. Potapov, D.S. Gorev, K.S. Shalaev, A.N. Kashutin, Parameters of silicone dioxide nanopowders obtained by cryochemical vacuum sublimation of colloidal solutions, J. Chemical engineering. 16 (2015) 596-600.
Google Scholar
[12]
A.N. Nikolenko, M.S. Kovalchenko, Analysis of random packing of identical particles. General theory, J. Powder metallurgy. 11 (1985) 38-41.
DOI: 10.1007/bf00802549
Google Scholar
[13]
I.G. Dick, E.N. Dyachenko, L.L Minkov, Simulation of random packing of balls, J. Physical mesomechanics. 9(2006) 63-69.
Google Scholar
[14]
Information on http://www.fhierlin.mpg.de/acnew/department/pages/teaching/pages/teaching__wintersemester__2013_2014/annette_trunschke__surface_area_and_pore_analysis__131101.pdf.
Google Scholar
[15]
K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, J. Pure and Applied Chemistry. 57 (1985) 603-619.
DOI: 10.1351/pac198557040603
Google Scholar
[16]
B. Akbari, Particle size characterization of nanoparticles - a practicalapproach, J. Iranian Journal of Materials Science & Engineering. 8 (2011) 48–56.
Google Scholar
[17]
H.S. Nalwa, Encyclopedia for Nanoscience and Nanotechnology, American Scientific Publishers, Los Angeles, (2004).
Google Scholar
[18]
W. Jianbo, Synthesis and characterization of LaFeO3 nano particles, J. Mater. Sci. Lett. 21 (2002) 1059–1062.
Google Scholar
[19]
T. Pradeep, Nano: The Essentials - Understanding Nanoscience and Nanotechnology, Tata McGraw-Hill Publishing Company Limited, New Delhi, (2007).
Google Scholar
[20]
V.T. Ding, T.Z. Wu, Study of dimensional characteristics of co and Fe nanopowders, J. Young scientist. 18(2016) 30-35.
Google Scholar