[1]
P. Lyakishev, Phase Diagrams of Binary Metallic Systems, Mechanical engineering, Moscow, 1996, Vol. 2.
Google Scholar
[2]
Yu.S. Avramov, A.D. Shlyapin, Alloys Based on Systems with a Limited Solubility in Liquid State (Theory, Technology, Structure, and Properties), Interkontakt Nauka, Moscow, (2002).
Google Scholar
[3]
O.A. Chikova, V.S. Tsepelev, V.V. Yukhin, A.N. Konstantinov, Viscosity of Fе-Cu melts, Inorg. Mater. 50. (2014) 642-645.
DOI: 10.1134/s0020168514060041
Google Scholar
[4]
I.G. Brodova, T.I. Yablonskikh, I.G. Shirinkina, V.V. Astafev, O.A. Chikova, M.A. Vityunin, Structure of Fe-Cu-C alloys produced by contact alloying, Phys. Met. Metallography. 108 (2009). 593-599.
DOI: 10.1134/s0031918x09120102
Google Scholar
[5]
O.A. Chikova, V.S. Tsepelev, V.V. Vyukhin, A.N. Konstantinov, Influence of copper additives on the viscosity and stratification of iron melt, Steel in Translation. 43 (2013) 262-266.
DOI: 10.3103/s0967091213050045
Google Scholar
[6]
O.A. Chikova, V.S. Tsepelev, A.N. Konstantinov, V.V. Vyukhin, Microseparation and Fe-Cu melt crystallization conditions, Melts. 3 (2013) 57-66.
Google Scholar
[7]
A.V. Andreeva, Basics of Physicochemistry and Composites Technology, IRRZR, Moscow, (2001).
Google Scholar
[8]
V.N. Yakovlev, Repair of equipment of engineering plants, Mashgiz, Moscow, (1962).
Google Scholar
[9]
Yu.N. Ivashenko, G.P. Hilya, Installation for measuring free surface energy, contact angle and density of melts by the method of a lying drop, Instrum. Exp. Techn. 6 (1972) 208-211.
Google Scholar
[10]
V.K. Kumikov, V.A. Sergeev, V.A. Sozaev, On high-temperature measurements of the surface tension of metals in vacuum conditions, Izvestiya Vysshikh Uchebnykh Zavedenii, Phys. Ser. 5 (2007) 631-633.
Google Scholar
[11]
L.B. Direktor, V.M. Zaichenko, I.L. Maikov, An improved method of sessile drop for determining the surface tension of liquids, High Tempt. 48 (2010) 176-180.
DOI: 10.1134/s0018151x10020069
Google Scholar
[12]
I. Egry, E. Ricci, R. Novakovic, S. Ozawa Surface tension of liquid metals and alloys. Recent developments, Adv. Colloid Interface Sci. 159 (2010) 198-212.
DOI: 10.1016/j.cis.2010.06.009
Google Scholar
[13]
J. Brillo, I. Egry, T. Matsushita, Density and surface tension of liquid ternary Ni-Cu-Fe alloys, Zeitschrift fur Metallkunde. 97 (2006) 28-34.
DOI: 10.1515/ijmr-2006-0005
Google Scholar
[14]
J. Brillo, I. Egry, Surface tension of nickel, copper, iron and their binary alloys, J. Mat. Sci. 40 (2005) 2213-2216.
DOI: 10.1007/s10853-005-1935-6
Google Scholar
[15]
H. Arslan, A. Dogan, Determination of surface tension of liquid ternary Ni-Cu-Fe and sub-binary alloys, Philos. Mag. 99 (2019) 1206-1224.
DOI: 10.1080/14786435.2019.1576937
Google Scholar
[16]
K. Nogi, W.B. Chung, A., Mclean Surface-tension of liquid Fe-(Cu, Sn, Cr) and Ni-(Cu, Sn) binary-alloys, Mater. Trans.JIM. 32 (1991) 164-168.
DOI: 10.2320/matertrans1989.32.164
Google Scholar
[17]
A.A. Zhukov and A.P. Vozchikov, Density and surface tension of Fe–Cu Melts, in S.I. Popel (Eds.) Physicochemical Studies of Metallurgical Processes, UPI, Sverdlovsk, 1987. p.61–63.
Google Scholar
[18]
S.I. Popel, Surface Phenomena in Melts, Metallurgy, Moscow, (1994).
Google Scholar
[19]
B.D. Summ, New correlations of surface tension with volume properties of liquids, Vestnik Moskovskogo Universiteta Seriya 2 Khimiya. 40 (1999) 400-405.
Google Scholar
[20]
A. Kobayashi, K. Nagayama, Microstructure and solidification process of Fe-Cu immiscible alloy by using containerless process, Jpn. J. Japan Inst. Met. 81 (2017) 251-256.
DOI: 10.2320/jinstmet.jbw201608
Google Scholar
[21]
A. A. Sevastianov, K. V. Korovin, O. P. Zotova, D. B. Solovev, Forecasting Methods Applied to Oil Production Deposits at Bazhenov Formation. IOP Conference Series: Materials Science and Engineering. 463 (2018) paper № 022005. [Online]. Available: https://doi.org/10.1088/1757-899X/463/2/022005.
DOI: 10.1088/1757-899x/463/2/022005
Google Scholar