[1]
E.G. Sokolov, V.P. Artemiev, A.V. Ozolin, Obtaining diamond-metal composites by means of brazes containing refractory fillers, Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya Khimicheskaya Tekhnologiya. 59 (2018) 56-59.
DOI: 10.6060/tcct.20165908.20y
Google Scholar
[2]
E.G. Sokolov, Influence of tin on the structure and hardness of metallic binders of diamond tools fabricated by composition brazing, Rus. J. Non-Fer. Met. 57 (2016) 633-637.
DOI: 10.3103/s1067821216060146
Google Scholar
[3]
J. Konstanty, Powder Metallurgy Diamond Tools, Elsevier, Oxford, (2005).
Google Scholar
[4]
N.I. Polushin, A.I. Laptev, M.N. Sorokin, A.B. Tleuzhev, A.S. Kushkhabiev, R.V. Taov, Dependence of abrasive ability of truing diamond tools on mechanical properties of metallic matrices, Rus. J. Non-Fer. Met. 55 (2014) 657–661.
DOI: 10.3103/s1067821214060200
Google Scholar
[5]
C. Artini, M.L. Muolo, A. Passerone, Diamond-metal interfaces in cutting tools: A review, J. Mater. Sci. 47 (2012) 3252–3264.
DOI: 10.1007/s10853-011-6164-6
Google Scholar
[6]
Yu.V. Naidich, G.A. Kolesnichenko, I.A. Lavrinenko Ya.F. Motsak, Brazing and Metallization of Ultra-Hard Tool Materials [in Russian], Naukova Dumka, Kiev, (1977).
Google Scholar
[7]
A. Rabinkin, A.E. Shapiro, M. Boretius, Brazing of diamonds and cubic boron nitride, in: Advances in Brazing: Science, Technology and Applications, Woodhead Publishing, Cambridge. (2013) 160-193.
DOI: 10.1533/9780857096500.2.160
Google Scholar
[8]
J. Grzonka, M.J. Kruszewski, M. Rosiński et al., Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99 (2015) 188-194.
DOI: 10.1016/j.matchar.2014.11.032
Google Scholar
[9]
P. Mukhopadhyay, A. Ghosh, On bond wear, grit-alloy interfacial chemistry and joint strength of synthetic diamond brazed with Ni-Cr-B-Si-Fe and Ti activated Ag-Cu filler alloys, Intern. J. Refract. Met. Hard Mater. 72 (2018) 236-243.
DOI: 10.1016/j.ijrmhm.2017.12.033
Google Scholar
[10]
C.H. Lee, J.O. Ham, M.S. Song, C.H. Lee, The interfacial reaction between diamond grit and Ni-based brazing filler metal, Mater. Transact. 48 (2007) 889-891.
DOI: 10.2320/matertrans.48.889
Google Scholar
[11]
N.I. Polushin, A.V. Kudinov, V.V. Zhuravlev, N.N. Stepareva, A.L. Maslov, Dispersed strengthening of a diamond composite electrochemical coating with nanoparticles, Rus. J. Non-Fer. Met. 54 (2013) 412–416.
DOI: 10.3103/s1067821213050088
Google Scholar
[12]
N.I. Polushin, M.S. Ovchinnikova, A.L. Maslov, The use of alumina nanoparticles as modifiers of galvanic binder of diamond tools, Adv. Mater. Res. 1040 (2014) 199–201.
DOI: 10.4028/www.scientific.net/amr.1040.199
Google Scholar
[13]
P. Loginov, Jr.L. Mishnaevsky, E. Levashov, M. Petrzhik, Diamond and cBN hybrid and nanomodified cutting tools with enhanced performance: Development, testing and modeling, Mater. Design. 88 (2015) 310-319.
DOI: 10.1016/j.matdes.2015.08.126
Google Scholar
[14]
D. Sidorenko, L. Mishnaevsky, E. Levashov, P. Loginov, M. Petrzhik, Carbon nanotube reinforced metal binder for diamond cutting tools, Mater. Design. 83 (2015) 536–544.
DOI: 10.1016/j.matdes.2015.06.056
Google Scholar
[15]
P.A. Loginov, D.A. Sidorenko, E.A. Levashov, M.I. Petrzhik, M.Ya Bychkova, L. Mishnaevsky, Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools, Intern. J. Refr. Met. Hard Mater. 71 (2018) 36–44.
DOI: 10.1016/j.ijrmhm.2017.10.017
Google Scholar
[16]
L. He, Y. Sun, C. Zhang, J. Wu, Q. Meng, Effect of the addition of nanosized Y2O3 on the mechanical properties of WC-bronze composites, in: Y. Han (Ed.), Physics and Engineering of Metallic Materials, CMC 2018, Springer Proceedings in Physics, Springer, Singapore. 217 (2019) 655-663.
DOI: 10.1007/978-981-13-5944-6_64
Google Scholar
[17]
Y. Sun, H. Wu, M. Li, Q. Meng, K. Gao, X. Lü, B. Liu, The effect of ZrO2 nanoparticles on the microstructure and properties of sintered WC-bronze-based diamond composites, Materials. 9 (2016) 343.
DOI: 10.3390/ma9050343
Google Scholar
[18]
C. Leinenbach, R. Transchel, K. Gorgievski, F. Kuster, H.R. Elsener, K. Wegener, Microstructure and mechanical performance of Cu-Sn-Ti-based active braze alloy containing in situ formed nano-sized TiC particles, J. Mater. Eng. Perform. 24 (2015) 2042–(2050).
DOI: 10.1007/s11665-015-1471-8
Google Scholar
[19]
R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles – a review, Metals. 4 (2014) 65-83.
DOI: 10.3390/met4010065
Google Scholar
[20]
K. Ma, E.J. Lavernia, J.M. Schoenung, Particulate reinforced aluminum alloy matrix composites – a review on the effect of microconstituents, Rev. Adv. Mater. Sci. 48 (2017) 91-104.
Google Scholar
[21]
V.I. Kostikov, L.E. Agureev, Z.V. Eremeeva, Development of nanoparticle-reinforced alumocomposites for rocket-space engineering, Rus. J. Non-Fer. Met. 56 (2015) 325-328.
DOI: 10.3103/s1067821215030104
Google Scholar
[22]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1–29.
Google Scholar
[23]
P.A. Vityaz', V.I. Zhornik, S.A. Kovaleva et al. Variation in the structure and properties of sintered alloys under the effect of nanodimensional carbon additives, Rus. J. Non-Fer. Met. 57 (2016) 135–140.
DOI: 10.3103/s1067821216020115
Google Scholar
[24]
I.M. Fedorchenko (Ed.), Encyclopedia of Inorganic Materials [in Russian], Glavnaya Redaktsiya USE, Kiev, (1977).
Google Scholar
[25]
E.G. Sokolov, V.P. Artemyev, Influence of tungsten on properties of metal joints of diamond tools, made by composite soldering, Technologiya Metallov. 2 (2015) 19-22.
Google Scholar
[26]
A.V. Ozolin, E.G. Sokolov, Obtaining nanodispersed tungsten powders by mechanical crushing, in: O.E. Chufistov (Ed.), Materials and technologies of the XXI century, Proc. XVI International Scientific-Technical Conf. [in Russian], Privolzhskiy Dom Znaniy, Penza. (2019) 46-50.
Google Scholar