[1]
Information on http://omksteel.com/lpk/.
Google Scholar
[2]
V.I. Odinokov, V.V. Chernomas, B.I. Proskuryakov, RU Patent 2,225,770. (2004).
Google Scholar
[3]
V.I. Odinokov, V.V. Chernomas, B.I. Proskuryakov, RU Patent 2,225,774. (2004).
Google Scholar
[4]
V.I. Odinokov, V.V. Chernomas, B.I. Proskuryakov, RU Patent 2,312,734. (2004).
Google Scholar
[5]
V.I. Odinokov, V.V. Chernomas, B.I. Proskuryakov, RU Patent 2,401,176. (2004).
Google Scholar
[6]
V.I. Odinokov, V.V. Chernomas, N.S. Lovizin, V.V. Stulov, S.Yu. Sklyar, Technology for preparing metal objects in a horizontal casting and metal deformation unit, Metallurgist. 53 (2009) 412-415.
DOI: 10.1007/s11015-009-9198-0
Google Scholar
[7]
V.V. Stulov, V.I. Odinokov, G.V. Ogloblin, V.V. Chernomas, A.A. Derbetkin, Producing continuous-cast deformed steel billet, Steel in Translation. 39 (2009) 639-644.
DOI: 10.3103/s0967091209080075
Google Scholar
[8]
V.V. Chernomas, Technological features of a combined process of obtaining continuously cast deformed blanks made from nonferrous metals, Russian Journal of Non-Ferrous Metals. 48 (2007) 427-429.
DOI: 10.3103/s1067821207060107
Google Scholar
[9]
V.V. Chernomas, S.N. Khimukhin, T.S. Khimukhina, Combined Process for Producing Continuously Cast and Deformed Billets from Technical Copper, Sino-Russian ASRTU Symposium on Advanced Materials and Materials and Processing Technology, KnE Materials Science, Ekaterinburg, 23–26 June 2016, 31–35.
DOI: 10.18502/kms.v1i1.558
Google Scholar
[10]
S.N. Khimukhin, V.V. Chernomas, K. Ri, E.Kh. Ri, Structure and properties of aluminum alloy AK12Ch (AK12) in the time of combined processes of casting and deformation, Tsvetnye Metally. 2015 (2015) 69-73.
DOI: 10.17580/tsm.2015.03.14
Google Scholar
[11]
V.I. Odinokov, B.I. Proskuryakov, V.V. Chernomas, V.V. Stulov, N.S. Lovizin, Increase in Reliability of the Foundry-Forging Module, Journal of Machinery Manufacture and Reliability. 38 (2009) 166-169.
DOI: 10.3103/s1052618809020113
Google Scholar
[12]
V.V. Chernomas, N.S. Lovizin, A.A. Sosnin, Stability Criteria for Manufacturing Metal Products on a Horizontal Metal Casting and Deformation Plant, Journal of Machinery Manufacture and Reliability. 41 (2012) 158-162.
DOI: 10.3103/s1052618812020045
Google Scholar
[13]
M. Alizadeh, J.J. Ahmad, A. Omid, New analytical model for local heat flux density in the mold in continuous casting of steel, Computational Materials Science. 44 (2008) 807-812.
DOI: 10.1016/j.commatsci.2008.05.034
Google Scholar
[14]
R.I. Shamsi, S.K. Ajmani, Analysis of Mould, Spray and Radiation Zones of Continuous Billet Caster by Three-dimensional Mathematical Model based on a Turbulent Fluid Flow, Steel research international. 81 (2010) 132-141.
DOI: 10.1002/srin.200900103
Google Scholar
[15]
A. Ramírez-López, R. Aguilar-López, A. Kunold-Bello, J. González-Trejo, M. Palomar-Pardavé, Simulation factors of steel continuous casting, International Journal of Minerals Metallurgy and Materials. 17 (2010) 267- 275.
DOI: 10.1007/s12613-010-0304-x
Google Scholar
[16]
Z. Malinowski, T. Telejko, B. Hadała, Influence of Heat Transfer Boundary Conditions on the Temperature Field of the Continuous Casting Ingot, Archives of Metallurgy and Materials. 57 (2012) 325-331.
DOI: 10.2478/v10172-012-0030-7
Google Scholar
[17]
C.S. Assuncao, R.P. Tavares, G. Oliveira, L.C. Pereira, Comparison of Uniform and Non-uniform Water Flux Density Approaches Applied on a Mathematical Model of Heat Transfer and Solidification for a Continuous Casting of Round Billets, Metallurgical and Materials Transactions B. 46 (2015) 366-377.
DOI: 10.1007/s11663-014-0200-2
Google Scholar
[18]
C.S. Assuncao, R.P. Tavares, G. Oliveira, Improvement in secondary cooling of continuous casting of round billets through analysis of heat flux distribution, Iron and Steelmaking. 42 (2015) 1-8.
DOI: 10.1179/1743281214y.0000000190
Google Scholar
[19]
H. Sun, J. Zhang, Macrosegregation Improvement by Swirling Flow Nozzle for Bloom Continuous Castings, Metallurgical and Materials Transactions B. 45 (2014) 936-946.
DOI: 10.1007/s11663-013-9999-1
Google Scholar
[20]
H. Zhong, X. Chen, Q. Han, K. Han, Q. Zha, Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting, Metallurgical and Materials Transactions B. 47 (2016) 2963-2970.
DOI: 10.1007/s11663-016-0660-7
Google Scholar
[21]
Z. Peng, Y. Bao, Y. Chen, L. Yang, C. Xie, F. Zhang, Effects of calculation approaches for thermal conductivity on the simulation accuracy of billet continuous casting, International Journal of Minerals Metallurgy and Materials. 21 (2014) 18-25.
DOI: 10.1007/s12613-014-0860-6
Google Scholar
[22]
L. Li, G.P. Chen, Numerical Simulation of Effect on Billet Casting Q235 under Inner-Out Cooler, Advanced Materials Research. 308-310 (2011) 651-655.
DOI: 10.4028/www.scientific.net/amr.308-310.651
Google Scholar
[23]
G.M. Sevastyanov, V.V. Chernomas, A.M. Sevastyanov, S.B. Mariyn, Numerical simulation features of continuous casting process form AD31 (АД31) alloy using finite-difference and finite-element models, Non-Ferrous Metals. 2015 (2015) 25- 29.
DOI: 10.17580/nfm.2015.02.05
Google Scholar
[24]
R. Statnikov, J. Matusov, & A.J. Statnikov, Optim, Multicriteria Engineering Optimization Problems: Statement, Solution and Applications, Theory Appl. 155 (2012) 355-375.
DOI: 10.1007/s10957-012-0083-9
Google Scholar