[1]
Y. Ding, G.-K. Xu, G.-F. Wang, On the determination of elastic moduli of cells by AFM based indentation, Scientific Reports. 7 (2017).
Google Scholar
[2]
A.E. Giannakopoulos, A. Triantafyllou, Spherical indentation of incompressible rubber-like materials, Journal of the Mechanics and Physics of Solids. 55 (2007) 1196-1211.
DOI: 10.1016/j.jmps.2006.11.010
Google Scholar
[3]
M.G. Zhang, Y.P. Cao, G.Y. Li, X.Q. Feng, Spherical indentation method for determining the constitutive parameters of hyperelestic soft materials, Biomech. Model. Mechanobiol. 13 (2014) 1-11.
DOI: 10.1007/s10237-013-0481-4
Google Scholar
[4]
S. Pathak, S.R. Kalidindi, Spherical nanoindentation stress–strain curves, Materials Science and Engineering R. 91 (2015).
DOI: 10.1016/j.mser.2015.02.001
Google Scholar
[5]
Th. Zisis, V.I. Zafiropoulou, A.E. Giannakopoulos, Evaluation of material properties of incompressible hyperelastic materials based on instrumented indentation of an equal-biaxial prestretched substrate, Int. J. Sol. Struct. 64-65 (2015) 132-144.
DOI: 10.1016/j.ijsolstr.2015.03.019
Google Scholar
[6]
Q. Zhang, Q.-S. Yang, The analytical and numerical study on the nanoindentation of nonlinear elastic materials, CMC. 37(2) (2013) 123-134.
Google Scholar
[7]
Ch.-E. Wu, K.-H. Lin, J.-Y. Juang, Hertzian load–displacement relation holds for spherical indentation on soft elastic solids undergoing large deformations, Tribology International. 97 (2016) 71–76.
DOI: 10.1016/j.triboint.2015.12.034
Google Scholar
[8]
R. Suzuki, K. Ito, T. Lee, N. Ogihara, Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation, Journal of the Mechanical Behavior of Biomedical Materials. 65 (2017) 753-760.
DOI: 10.1016/j.jmbbm.2016.09.027
Google Scholar
[9]
Y. Astapov, D. Khristich, Finite deformations of an elastic cylinder during indentation, Int. J. Appl. Mech. 10(03) (2018) 1850026.
DOI: 10.1142/s1758825118500266
Google Scholar
[10]
Y.V. Astapov, V.V. Glagolev, D.V. Khristich, A.A. Markin, M.Y. Sokolova, Nonisothermic finite deformations of hypoelastic bodies, Int. J. Appl. Mech. 8(8) (2016) 1650099.
DOI: 10.1142/s175882511650099x
Google Scholar
[11]
A.G. Korba, M.E. Barkey, New model for hyper-elastic materials behavior with an application on natural rubber, Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference MSEC2017. June 4-8, 2017, Los Angeles, CA, USA.
DOI: 10.1115/msec2017-2792
Google Scholar
[12]
A.A. Markin, M.Yu. Sokolova, Thermomechanics of Elastoplastic Deformation, Cambridge International Science Publishing, Cambridge, (2015).
Google Scholar
[13]
G.L. Brovko, On general principles of the theory of constitutive relations in classical continuum mechanics, J. Eng. Math. 78 (2013) 37-53.
DOI: 10.1007/s10665-011-9508-y
Google Scholar
[14]
R. Hill, On constitutive inequalities for simple materials – I, J. Mech. Phys. Solids. 16:4 (1968) 229-242.
Google Scholar
[15]
H. Xiao, L.S. Chen, Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mechanica. 157 (2002) 51-60.
DOI: 10.1007/bf01182154
Google Scholar
[16]
C. Truesdell, A First Course in Rational Continuum Mechanics, second ed., Academic Press, San Diego, (1977).
Google Scholar
[17]
O.C. Zienkiewicz, R. L. Taylor, The Finite Element Method, fifth ed., Butterworth-Heinemann a division of Reed Educational and Professional Publishing Ltd, Woburn, (2000).
Google Scholar
[18]
M.R. Mansouri, H. Darijani, M. Baghani, On the correlation of FEM and experiments for hyperelastic elastomers, Experimental Mechanics. 57 (2017) 195-206.
DOI: 10.1007/s11340-016-0236-0
Google Scholar
[19]
P. Krysl, J. Novak, S. Oberrecht, B-bar FEMs for anisotropic elasticity, Int. J. Numer. Meth. Engng. 98(2) (2014).
DOI: 10.1002/nme.4621
Google Scholar
[20]
N.G. Bourago, V.N. Kukudzhanov, A review of contact algorithms, Mech. Solids. 40(1) (2005) 35-71.
Google Scholar
[21]
K. Azzez, M. Chaabane, M.-A. Abellan, J.-M. Bergheau, H. Zahouani, A. Dogui, Relevance of indentation test to characterize soft biological tissue: application to human skin, Int. J. Appl. Mech. 10(07) (2018) 1850074.
DOI: 10.1142/s1758825118500746
Google Scholar