[1]
R. Shishoo, Recent developments in materials for use in protective clothing, International Journal of Clothing Science and Technolog, June 2002. 14 (2002) 201-215.
DOI: 10.1108/09556220210437167
Google Scholar
[2]
P.W. Gibson, C. Lee, F. Ko, D. Reneker Application of Nanofiber Technology to Nonwoven Thermal Insulation, Journal of Engineered Fibers and Fabrics. 2(2009) 32-40.
DOI: 10.1177/155892500700200204
Google Scholar
[3]
I. Cherunova , S. Tashpulatov, S. Kolesnik, Automation of Deformed Fibrous Materials Thermal Characteristics Accounting Process in Garments Production, IEEE Xplore, (2018) Information on https://ieeexplore.ieee.org/document/8501795.
DOI: 10.1109/rusautocon.2018.8501795
Google Scholar
[4]
I.V. Cherunova, M.P. Stenkima, P.V. Cherunov, Investigation of the structure and properties of flexible polymeric materials for integration with thin heat conductors structural membranes, Structural Membranes – 2017. (2017) 210-216.
Google Scholar
[5]
R.A. Granger, Experiments in Heat Transfer and Thermodynamics, Cambridge University Press, (2012).
Google Scholar
[6]
M. Baczek – Baczek, L. Hes, Determination of heat transfer by radiation in textile fabrics by means of method with known emissivity of plates, Journal of Industrial Textiles, 44(2014) 115–129.
DOI: 10.1177/1528083713480377
Google Scholar
[7]
Materials for clothes, The method for determining the total thermal resistance, RF. GOST 20489-75 (1975).
Google Scholar
[8]
Ergonomics of the thermal environment, Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects', International Organisation for Standardisation, Geneva, EN ISO 11079 (2007).
DOI: 10.3403/30118491u
Google Scholar
[9]
Yu.N. Nekrasov, M.V. Rodicheva, A.V. Uvarov, Device for determination of heat-shielding properties of sewing materials, MGUDT, (2000) 59-60.
Google Scholar
[10]
V.A. Osipova, Experimental study of heat transfer processes, Energiya, (1979).
Google Scholar
[11]
A.F. Mills, B.H. Chang, Error analysis of experiments, University of California, (2004).
Google Scholar
[12]
I.V. Cherunova, M.P. Stenkima, P.V. Cherunov, Investigation of the structure and properties of flexible polymeric materials for integration with thin heat conductors structural membranes, Structural Membranes – 2017. (2017) 210-216.
Google Scholar
[13]
I. Cherunova, M. Dhone, N. Kornev, Coupled thermo-aerodynamical Problems in design of protection Cloth, COUPLED PROBLEMS-2015. (2015) 1303-1311.
Google Scholar
[14]
G. Havenith, R. Hws, W.A. Lotens, Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness, ERGONOMICS. 33 (1990) 67-84.
DOI: 10.1080/00140139008927094
Google Scholar
[15]
E.D. Andersen Linear optimization: Theory, methods, and Extensions, MOSEK APS, (2010).
Google Scholar
[16]
I.V. Cherunova, S.A. Kolesnik, S.V. Kurenova, Yu.V. Eremina, A.V. Merkulova, P.V. Cherunov, Study of the structural and acoustic properties of clothing materials for thermal protection of human, International Journal of Applied Engineering Research. 10 - 9 (2015) 40506-40512.
Google Scholar
[17]
Standard Test Method for Thickness of Textile Materials, ASTM D1777, 96, (2015).
Google Scholar
[18]
P. Cherunov, I. Cherunova, S. Knyazeva, M. Stenkina, E. Stefanova, N. Kornev, The Development of the Research Techniques of Structure and Properties of Composite Textile Materials when Interacting with Viscous Fractions of Hydrocarbon Compounds, Structural Membranes – 2015. (2015) 555-564.
Google Scholar
[19]
Information on http://legprom.net/?id=1452.
Google Scholar
[20]
Information on https://www.uio.no/studier/emner/matnat/ifi/INF-GEO4310/h09/ undervisningsmateriale/imaging-kap2.pdf.
Google Scholar