[1]
M.V. Thompson, Defects and radiation damage in metals, M.: Mir, (1971).
Google Scholar
[2]
V.M. Agranovich, V.V. Kirsanov, Simulation problems of radiation defects in crystals, Uspekhi Fizicheskikh Nauk. 118 1 (1976) 3-51.
DOI: 10.3367/ufnr.0118.197601a.0003
Google Scholar
[3]
O.V. Aleksandrov, S.A. Visotskaya, V.S. Zhurkin, Model of charge of accumulation in MOS-transistors at ionizing irradiation, Izvestiya St. Petersburg State Electrotechnical University «LETI». 7 (2012) 20-27.
Google Scholar
[4]
Yu.V. Bogatyrev, S.B. Lastovsky, S.A. Soroka, S.V. Shwedov, D.A. Ogorodnikov, Influence of gamma radiation on MOS/SOI transistors, Reports of BGUIR. 3 97 (2016) 75-80.
Google Scholar
[5]
T.S. Frangulyan, I.P. Vasil'ev, S.A. Ghyngazov, Effect of grinding and subsequent thermal annealing on phase composition of subsurface layers of zirconia ceramics, Ceramics International. 44 (2018) 2501-2503.
DOI: 10.1016/j.ceramint.2017.10.234
Google Scholar
[6]
F.F. Komarov, O.V. Milchanin, V.A. Skuratov, M.A. Mokhovikov, A. Janse van Vuuren, J.N. Neethling, E. Wendler, L.A. Vlasukova, I.N. Parkhomenko, V.N. Yuvchenko, Ion-beam formation and track modification of InAs nanoclusters in silicon and silicon dioxide, News of the Russian Academy of Sciences, Physical series. 80 2 (2016) 165-169.
DOI: 10.3103/s106287381602012x
Google Scholar
[7]
V.A. Ivchenko, Atomic structure of cascades of atomic displacements in metals and alloys after different types of radiation, IOP Conf. Series: Materials Science and Engineering. 110 012003 (2016) 1-5.
DOI: 10.1088/1757-899x/110/1/012003
Google Scholar
[8]
V.S. Kharlamov, D.V. Kulikiv, M.N. Lubov, Yu.V. Trushin, Kinetic Modeling of the Growth of Copper Clusters of Varios Heights in Subsurface Layers of Lead, Tech. Phys. Lett. 41 (2015) 961-963.
DOI: 10.1134/s1063785015100090
Google Scholar
[9]
M.N. Levin, A.V. Tatarintsev, V.A. Makarenko, V.R. Gitlin, X-ray or UV adjustment of MOS threshold voltage: Analytical and numerical modeling, Russ.Microelectronics. 35 5 (2006) 329-336.
DOI: 10.1134/s1063739706050088
Google Scholar
[10]
O.I. Velichko, Modeling of the transient interstitial diffusion of implanted atoms during low temperature annealing of silicon substrates, Physica B. 407 (2012) 2176-2184.
DOI: 10.1016/j.physb.2012.02.036
Google Scholar
[11]
M. Makhavikou, F. Komarov, I. Parkhomenko, L. Vlasukova, O. Milchanin, J. Zuk, Е. Wendler, I. Romanov, O. Korolik, A. Togambayeva, Structure and optical properties of SiO2 films with ZnSe nanocrystals formedby ion implantation, Surface Coatings Technology. (2018) 596-600.
DOI: 10.1016/j.surfcoat.2018.03.017
Google Scholar
[12]
M. Makhavikou, I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, A. Mudryi, V. Zhivulko, Е. Wendler, A. Togambayeva, O. Korolik, Raman monitoring of ZnSe and ZnSxSe1−x nanocrystals formed in SiO2 by ion implantationNuclear, Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. (2018) 1-4.
DOI: 10.1016/j.nimb.2018.05.010
Google Scholar
[13]
E.G. Boos, A.I. Kupchishin, A.A. Kupchishin, Ye.V. Shmygalev, T.A. Shmygaleva, Cascade-probabilistic method. Solution of radiation-physical problems, Boltzmann equations. Connection with Markov's chains. Monograph, Almaty, Abay KazNPU, al-Farabi KazNU NCTaMSRI, Kama LLP. (2015).
DOI: 10.15328/chemb_2013_3112-117
Google Scholar
[14]
А.I. Kupchishin, E.V. Shmygalev, T.A. Shmygalevа, A.B. Jorabayev, Relationship between Markov Chains and Radiation Defect Formation Processes by Ion Irradiation, Modern Applied Science. 9,3 (2015) 59-70.
DOI: 10.5539/mas.v9n3p59
Google Scholar
[15]
N.A. Voronova, A.I. Kupchishin, A.A. Kupchishin, A.A. Kuatbayeva, T.A. Shmygaleva, Computer Modeling of Depth Distribution of Vacancy Nanoclusters in Ion-Irradiated Materials, Key Engineering Materials. 769 (2018) 358-363.
DOI: 10.4028/www.scientific.net/kem.769.358
Google Scholar
[16]
A.I. Kupchishin, N.A. Voronova, T.A. Shmygalevа, and A.A. Kupchishin, Computer simulation of vacancy clusters distribution by depth in molybdenum irradiated by alpha particles, Key Engineering Materials, (2018) 3-7.
DOI: 10.4028/www.scientific.net/kem.781.3
Google Scholar
[17]
T.A. Shmygalevа, A.I. Kupchishin, A.A. Kupchishin, С.А. Shafii, Computer simulation of the energy spectra of PKA in materials irradiated by protons in the framework of the CP method, IOP Conf. Series: Materials Science and Engineering. 510 (2019) 1-6.
DOI: 10.1088/1757-899x/510/1/012024
Google Scholar
[18]
A.D. Pogrebnjak, Ya.O. Kravchenko, O.V. Bondar, B. Zhollybekov, A.I. Kupchishin, Structural Features and Tribological Properties of Multilayer Coatings Based on Refractory Metals, Protection of Metals and Physical Chemistry of Surfaces. 54 2 (2018) 240-258.
DOI: 10.1134/s2070205118020107
Google Scholar
[19]
A.D. Pogrebnyak, Pshyk, E. Coyb, K. Zaleskib, B. Peplinskab, G. Nowaczykb, A.I. Kupchishin, A.I. Kassenova, L.G. Kravchenko, Gradient Nanostructured Coatings Obtained by Magnetron Sputtering of a Multiphase Al–TiB2–TiSi2 Target, The Physics of Metals and Metallography. 117 10 (2016) 990-1002.
DOI: 10.1134/s0031918x16020071
Google Scholar
[20]
O.A. Kozlova, M.S. Zelenina, Аb initio simulation of two-dimensional MOS2 with vacancy clusters using grid technologies, Materials Physics and Mechanics. 20 1 (2014) 51-55.
Google Scholar