On the Connection of Cascade-Probability Function on the Formation of Primary-Knocked on Atoms for Ions Taking into Account Energy Losses with a Boltzman Equation

Article Preview

Abstract:

The integral-differential equation of the cascade process for ions was solved using the Laplace transform and the method of successive approximations, taking into account the energy loss during the formation of primary-knocked-on atoms (PKA) in a one-dimensional model of an elementary atom. It is shown that the solution includes a cascade-probability function (CPF) for these particles. The main properties of CPF are considered and its graphical dependencies on the depth of registration are presented. It is shown that with the specific ionization loss coefficient k = 0, the FQM turns into the simplest cascade-probability function. When λ0→ 0, λ0→∞ and n→∞, the KV-function is equal to 0. The sum of the probabilities for all possible collisions from 0 to ∞ is 1. As the detection depth h increases, for all values of n, the CRF increases, reaches a maximum and then decreases . With increasing n, the curves shift to the right.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

929-933

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.V. Thompson, Defects and radiation damage in metals, M.: Mir, (1971).

Google Scholar

[2] V.M. Agranovich, V.V. Kirsanov, Simulation problems of radiation defects in crystals, Uspekhi Fizicheskikh Nauk. 118 1 (1976) 3-51.

DOI: 10.3367/ufnr.0118.197601a.0003

Google Scholar

[3] O.V. Aleksandrov, S.A. Visotskaya, V.S. Zhurkin, Model of charge of accumulation in MOS-transistors at ionizing irradiation, Izvestiya St. Petersburg State Electrotechnical University «LETI». 7 (2012) 20-27.

Google Scholar

[4] Yu.V. Bogatyrev, S.B. Lastovsky, S.A. Soroka, S.V. Shwedov, D.A. Ogorodnikov, Influence of gamma radiation on MOS/SOI transistors, Reports of BGUIR. 3 97 (2016) 75-80.

Google Scholar

[5] T.S. Frangulyan, I.P. Vasil'ev, S.A. Ghyngazov, Effect of grinding and subsequent thermal annealing on phase composition of subsurface layers of zirconia ceramics, Ceramics International. 44 (2018) 2501-2503.

DOI: 10.1016/j.ceramint.2017.10.234

Google Scholar

[6] F.F. Komarov, O.V. Milchanin, V.A. Skuratov, M.A. Mokhovikov, A. Janse van Vuuren, J.N. Neethling, E. Wendler, L.A. Vlasukova, I.N. Parkhomenko, V.N. Yuvchenko, Ion-beam formation and track modification of InAs nanoclusters in silicon and silicon dioxide, News of the Russian Academy of Sciences, Physical series. 80 2 (2016) 165-169.

DOI: 10.3103/s106287381602012x

Google Scholar

[7] V.A. Ivchenko, Atomic structure of cascades of atomic displacements in metals and alloys after different types of radiation, IOP Conf. Series: Materials Science and Engineering. 110 012003 (2016) 1-5.

DOI: 10.1088/1757-899x/110/1/012003

Google Scholar

[8] V.S. Kharlamov, D.V. Kulikiv, M.N. Lubov, Yu.V. Trushin, Kinetic Modeling of the Growth of Copper Clusters of Varios Heights in Subsurface Layers of Lead, Tech. Phys. Lett. 41 (2015) 961-963.

DOI: 10.1134/s1063785015100090

Google Scholar

[9] M.N. Levin, A.V. Tatarintsev, V.A. Makarenko, V.R. Gitlin, X-ray or UV adjustment of MOS threshold voltage: Analytical and numerical modeling, Russ.Microelectronics. 35 5 (2006) 329-336.

DOI: 10.1134/s1063739706050088

Google Scholar

[10] O.I. Velichko, Modeling of the transient interstitial diffusion of implanted atoms during low temperature annealing of silicon substrates, Physica B. 407 (2012) 2176-2184.

DOI: 10.1016/j.physb.2012.02.036

Google Scholar

[11] M. Makhavikou, F. Komarov, I. Parkhomenko, L. Vlasukova, O. Milchanin, J. Zuk, Е. Wendler, I. Romanov, O. Korolik, A. Togambayeva, Structure and optical properties of SiO2 films with ZnSe nanocrystals formedby ion implantation, Surface Coatings Technology. (2018) 596-600.

DOI: 10.1016/j.surfcoat.2018.03.017

Google Scholar

[12] M. Makhavikou, I. Parkhomenko, L. Vlasukova, F. Komarov, O. Milchanin, A. Mudryi, V. Zhivulko, Е. Wendler, A. Togambayeva, O. Korolik, Raman monitoring of ZnSe and ZnSxSe1−x nanocrystals formed in SiO2 by ion implantationNuclear, Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. (2018) 1-4.

DOI: 10.1016/j.nimb.2018.05.010

Google Scholar

[13] E.G. Boos, A.I. Kupchishin, A.A. Kupchishin, Ye.V. Shmygalev, T.A. Shmygaleva, Cascade-probabilistic method. Solution of radiation-physical problems, Boltzmann equations. Connection with Markov's chains. Monograph, Almaty, Abay KazNPU, al-Farabi KazNU NCTaMSRI, Kama LLP. (2015).

DOI: 10.15328/chemb_2013_3112-117

Google Scholar

[14] А.I. Kupchishin, E.V. Shmygalev, T.A. Shmygalevа, A.B. Jorabayev, Relationship between Markov Chains and Radiation Defect Formation Processes by Ion Irradiation, Modern Applied Science. 9,3 (2015) 59-70.

DOI: 10.5539/mas.v9n3p59

Google Scholar

[15] N.A. Voronova, A.I. Kupchishin, A.A. Kupchishin, A.A. Kuatbayeva, T.A. Shmygaleva, Computer Modeling of Depth Distribution of Vacancy Nanoclusters in Ion-Irradiated Materials, Key Engineering Materials. 769 (2018) 358-363.

DOI: 10.4028/www.scientific.net/kem.769.358

Google Scholar

[16] A.I. Kupchishin, N.A. Voronova, T.A. Shmygalevа, and A.A. Kupchishin, Computer simulation of vacancy clusters distribution by depth in molybdenum irradiated by alpha particles, Key Engineering Materials, (2018) 3-7.

DOI: 10.4028/www.scientific.net/kem.781.3

Google Scholar

[17] T.A. Shmygalevа, A.I. Kupchishin, A.A. Kupchishin, С.А. Shafii, Computer simulation of the energy spectra of PKA in materials irradiated by protons in the framework of the CP method, IOP Conf. Series: Materials Science and Engineering. 510 (2019) 1-6.

DOI: 10.1088/1757-899x/510/1/012024

Google Scholar

[18] A.D. Pogrebnjak, Ya.O. Kravchenko, O.V. Bondar, B. Zhollybekov, A.I. Kupchishin, Structural Features and Tribological Properties of Multilayer Coatings Based on Refractory Metals, Protection of Metals and Physical Chemistry of Surfaces. 54 2 (2018) 240-258.

DOI: 10.1134/s2070205118020107

Google Scholar

[19] A.D. Pogrebnyak, Pshyk, E. Coyb, K. Zaleskib, B. Peplinskab, G. Nowaczykb, A.I. Kupchishin, A.I. Kassenova, L.G. Kravchenko, Gradient Nanostructured Coatings Obtained by Magnetron Sputtering of a Multiphase Al–TiB2–TiSi2 Target, The Physics of Metals and Metallography. 117 10 (2016) 990-1002.

DOI: 10.1134/s0031918x16020071

Google Scholar

[20] O.A. Kozlova, M.S. Zelenina, Аb initio simulation of two-dimensional MOS2 with vacancy clusters using grid technologies, Materials Physics and Mechanics. 20 1 (2014) 51-55.

Google Scholar