[1]
R. Vaßen, M.O. Jarligo, T. Steinke, et al. Overview on advanced thermal barrier coatings, Surface and Coatings Technology, 205 (2010) 938-942.
DOI: 10.1016/j.surfcoat.2010.08.151
Google Scholar
[2]
D.R. Clarke, M. Oechsner, N.P. Padture, Thermal-barrier coatings for more efficient gas-turbine engines, MRS bulletin, 37 (2012) 891-898.
DOI: 10.1557/mrs.2012.232
Google Scholar
[3]
P. K. Wright, A.G. Evans, Mechanisms governing the performance of thermal barrier coatings, Current Opinion in Solid State and Materials Science, 4 (1999) 255-265.
DOI: 10.1016/s1359-0286(99)00024-8
Google Scholar
[4]
I. Gurrappa, A.S. Rao, Thermal Barrier Coatings for Enhanced Efficiency of Gas Turbine Engines, Surface and Coatings Technology, 201 (2006) 3016-3029.
DOI: 10.1016/j.surfcoat.2006.06.026
Google Scholar
[5]
R. Darolia, Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 58 (2013) 315-348.
DOI: 10.1179/1743280413y.0000000019
Google Scholar
[6]
N.A. Fleck, A.G. Evans, S. Faulhaber, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings, Wear, 260 (2006) 886-894.
DOI: 10.1016/j.wear.2005.05.005
Google Scholar
[7]
A.G. Davis, D.H. Boone, A.V. Levy, Erosion of ceramic thermal barrier coatings, Wear, 110 (1986) 101-116.
DOI: 10.1016/0043-1648(86)90141-9
Google Scholar
[8]
P.S. Michael, K.R. Amarendra, D. M. Zhu, et al. Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 279 (2015) 44-52.
DOI: 10.1016/j.surfcoat.2015.08.010
Google Scholar
[9]
X. Chen, M.Y. He, I. Spitsberg, et al. Mechanism governing the high temperature erosion of thermal barrier coatings. Wear, 256 (2004) 735-746.
DOI: 10.1016/s0043-1648(03)00446-0
Google Scholar
[10]
R.G. Wellman, J.R. Nicholls, K. Murphy, Effect of microstructure and temperature on the erosion rates and mechanisms of modified EB PVD TBCs, Wear, 267 (2009) 1927-1934.
DOI: 10.1016/j.wear.2009.04.002
Google Scholar
[11]
M.J. Liu, M. Zhang, Q. Zhang, et al., Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process, Applied Surface Science, 428 (2018) 877-884.
DOI: 10.1016/j.apsusc.2017.09.218
Google Scholar
[12]
M.J. Liu, K.J. Zhang, Q. Zhang, et al., Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition, Applied Surface Science, 471 (2019) 950-959.
DOI: 10.1016/j.apsusc.2018.12.070
Google Scholar
[13]
Q.Y. Chen, X.Z. Peng, G.J. Yang, et al., Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a <80 kW Shrouded Torch Based on Optical Emission Spectroscopy, Journal of Thermal Spray Technology, 24 (2015) 1038-1045.
DOI: 10.1007/s11666-015-0248-9
Google Scholar
[14]
M.J. Liu, M. Zhang, Q Zhang, et al., Evaporation of Droplets in Plasma Spray–Physical Vapor Deposition Based on Energy Compensation between Self-Cooling and Plasma Heat Transfer, Journal of Thermal Spray Technology, 26 (2017) 1641-1650.
DOI: 10.1007/s11666-017-0610-1
Google Scholar
[15]
G.Mauer, M.O. Jarligo, S. Rezanka, et al., Novel opportunities for thermal spray by PS-PVD [J]. Surface and Coatings Technology, 268 (2015) 52-57.
DOI: 10.1016/j.surfcoat.2014.06.002
Google Scholar
[16]
G.Mauer, A.Hospach, N.Zotov, et al., Process conditions and microstructures of ceramic coating by gas phase deposition based on plasma spraying, Journal of Thermal Spray Technology, 22 (2013) 83-89.
DOI: 10.1007/s11666-012-9838-y
Google Scholar
[17]
M.P. Schmitt, B.J. Harder, D.E., Wolfe, Process-structure-property relations for the erosion durability of plasma spray-physical vapor deposition (PS-PVD) thermal barrier coatings, Surface & Coating Technology, 297 (2016) 11-18.
DOI: 10.1016/j.surfcoat.2016.04.029
Google Scholar
[18]
R.G. Wellman, J.R. Nicholls, A review of the erosion of thermal barrier coatings, Journal of Physics D: Applied Physics, 40 (2007) 293-305.
Google Scholar
[19]
F. Cernuschi, L. Lorenzoni, S. Capelli, et al., Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings, Wear, 271 (2011) 2909-2918.
DOI: 10.1016/j.wear.2011.06.013
Google Scholar
[20]
G.J. Yang, C.J. Li, S.J. Zhang, et al. High-Temperature Erosion of HVOF Sprayed Cr3C2-NiCr Coating and Mild Steel for Boiler Tubes, Journal of Thermal Spray Technology, 17 (2008) 782-787.
DOI: 10.1007/s11666-008-9222-0
Google Scholar
[21]
E.M. Leivo, M.S. Vippola, P.P.A. Sorsa, et al., Wear and corrosion properties of plasma sprayed Al2O3 and Cr2O3 coatings sealed by aluminum phosphates, Journal of Thermal spray technology, 6 (1997) 205-210.
DOI: 10.1007/s11666-997-0014-8
Google Scholar
[22]
G.J. Yang, C.J Li, C.X. Li, et al. Improvement of Adhesion and Cohesion in Plasma-Sprayed Ceramic Coatings by Heterogeneous Modification of Nonbonded Lamellar Interface Using High Strength Adhesive Infiltration, Journal of Thermal Spray Technology, 22 (2013) 36-47.
DOI: 10.1007/s11666-012-9831-5
Google Scholar
[23]
C.J. Li, G.J Yang, Potential strengthening of erosion performance of plasma-sprayed Al2O3 coating by adhesives impregnation, Journal of Materials Science Letters, 22 (2003) 1499-1501.
Google Scholar
[24]
C. J Li, G.J Yang, Ohmori A. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings, Wear, 260 (2006) 1166-1172.
DOI: 10.1016/j.wear.2005.07.006
Google Scholar