[1]
De Silva, K. S. B.; Gentle, A.; Arnold, M.; Keast, V. J.; Cortie, M. B., Dielectric function and its predicted effect on localized plasmon resonances of equiatomic Au-Cu. Journal of Physics D-Applied Physics 2015, 48, (21), 7.
DOI: 10.1088/0022-3727/48/21/215304
Google Scholar
[2]
Si-In, K.; Gayoung, E.; Mijeong, K.; Taejoon, K.; Hyoban, L.; Ahreum, H.; Haesik, Y.; Bongsoo, K., Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection. Nanotechnology 2015, 26, (24), 245702 (9 pp.)-245702 (9 pp.).
DOI: 10.1088/0957-4484/26/24/245702
Google Scholar
[3]
Sousanis, A.; Grammatikopoulos, S.; Delimitis, A.; Dracopoulos, V.; Poulopoulos, P., Localized surface plasmon resonances after selective oxidization of AuCu solid solution nanocrystalline films. Applied Physics Letters 2015, 107, (1), 5.
DOI: 10.1063/1.4926333
Google Scholar
[4]
Taherkhani, F.; Parviz, Z.; Akbarzadeh, H.; Fortunelli, A., Temperature and Doping Effect on Thermal Conductivity of Copper-Gold Icosahedral Bimetallic Nanoclusters and Bulk Structures. Journal of Physical Chemistry C 2015, 119, (14), 7922-7932.
DOI: 10.1021/jp512832b
Google Scholar
[5]
Liu, D.; Luo, Q.; Zhou, F., Nonenzymatic glucose sensor based on gold–copper alloy nanoparticles on defect sites of carbon nanotubes by spontaneous reduction. Synthetic Metals 2010, 160, (15), 1745-1748.
DOI: 10.1016/j.synthmet.2010.06.011
Google Scholar
[6]
Liu, X.; Wang, A.; Wang, X.; Mou, C.-Y.; Zhang, T., Au-Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chemical Communications 2008, (27), 3187-3189.
DOI: 10.1039/b804362k
Google Scholar
[7]
Corma, A.; Iglesias, M.; Llabrés i Xamena, F. X.; Sánchez, F., Cu and Au Metal–Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chemistry – A European Journal 2010, 16, (32), 9789-9795.
DOI: 10.1002/chem.201000278
Google Scholar
[8]
Benisek, A.; Dachs, E., The vibrational and configurational entropy of disordering in Cu3Au. Journal of Alloys and Compounds 2015, 632, 585-590.
DOI: 10.1016/j.jallcom.2014.12.215
Google Scholar
[9]
Scardi, P.; Leoni, M., Diffraction whole-pattern modelling study of anti-phase domains in Cu3Au. Acta Materialia 2005, 53, (19), 5229-5239.
DOI: 10.1016/j.actamat.2005.08.002
Google Scholar
[10]
Rentenberger, C.; Karnthaler, H. P., Extensive disordering in long-range-ordered Cu3Au induced by severe plastic deformation studied by transmission electron microscopy. Acta Materialia 2008, 56, (11), 2526-2530.
DOI: 10.1016/j.actamat.2008.01.035
Google Scholar
[11]
Xiong, L. H.; Lou, H. B.; Wang, X. D.; Debela, T. T.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, C. Z.; Jiang, J. Z., Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study. Acta Materialia 2014, 68, (Supplement C), 1-8.
DOI: 10.1016/j.actamat.2014.01.004
Google Scholar
[12]
Gao, Z.; Hu, R.; Wang, J.; Li, J., Heredity of medium-range order structure from melts to the microstructure of Ni–Cr–W superalloy. Applied Physics A 2015, 120, (1), 183-188.
DOI: 10.1007/s00339-015-9148-6
Google Scholar
[13]
Nikitin, K. V.; Nikitin, V. I.; Timoshkin, I. Y.; Krivopalov, D. S.; Chernikov, D. G., Hereditary influence of the structure of charge materials on the density of aluminum alloys of the Al-Si system. Russian Journal of Non-Ferrous Metals 2015, 56, (1), 20-25.
DOI: 10.3103/s1067821215010137
Google Scholar
[14]
Sanin, V. V.; Filonov, M. R.; Yukhvid, V. I.; Anikin, Y. A.; Mikhailov, A. M., Investigation into the influence of the remelting temperature on the structural heredity of alloys fabricated by centrifugal SHS metallurgy. Russian Journal of Non-Ferrous Metals 2016, 57, (2), 124-130.
DOI: 10.3103/s1067821216020097
Google Scholar
[15]
Wen, D. D.; Peng, P.; Jiang, Y. Q.; Liu, R. S., On the heredity and evolution of icosahedral clusters during the rapid solidification of liquid Cu50Zr50 alloys. Journal of Non-Crystalline Solids 2013, 378, (Supplement C), 61-70.
DOI: 10.1016/j.jnoncrysol.2013.06.010
Google Scholar
[16]
Li, G.; Wang, Y. Y.; Liaw, P. K.; Li, Y. C.; Liu, R. P., Electronic Structure Inheritance and Pressure-Induced Polyamorphism in Lanthanide-Based Metallic Glasses. Physical Review Letters 2012, 109, (12), 125501.
DOI: 10.1103/physrevlett.109.125501
Google Scholar
[17]
Bai, Y. W.; Bian, X. F.; Lv, X. Q.; Pan, S. P.; Qin, J. Y.; Qin, X. B.; Hu, L. N., Heredity of medium-range order structure from melts to amorphous solids. Journal of Applied Physics 2012, 112, (8), 083524.
DOI: 10.1063/1.4759143
Google Scholar
[18]
Li, X. X.; Wang, J.; Qin, J. Y.; Dong, B. S., The relationship between atomic structure and magnetic property of amorphous Fe78Si9B13 alloy at different pressures. Journal of Magnetism and Magnetic Materials 2017, 443, 216-221.
DOI: 10.1016/j.jmmm.2017.07.068
Google Scholar
[19]
Xiong, L. H.; Wang, X. D.; Yu, Q.; Zhang, H.; Zhang, F.; Sun, Y.; Cao, Q. P.; Xie, H. L.; Xiao, T. Q.; Zhang, D. X.; Wang, C. Z.; Ho, K. M.; Ren, Y.; Jiang, J. Z., Temperature-dependent structure evolution in liquid gallium. Acta Materialia 2017, 128, 304-312.
DOI: 10.1016/j.actamat.2017.02.038
Google Scholar
[20]
Šı́ma, V. r., Two models of solid–solid transformation kinetics in the CuAu intermetallic compound. Materials Science and Engineering: A 2002, 324, (1), 62-67.
DOI: 10.1016/s0921-5093(01)01284-9
Google Scholar
[21]
Bai, Y.; Bian, X.; Qin, J.; Hu, L.; Yang, J.; Zhang, K.; Zhao, X.; Zhang, S.; Huang, Y.; Yang, C., Local atomic structure inheritance in Ag50Sn50 melt. Journal of Applied Physics 2014, 115, (4), 043506.
DOI: 10.1063/1.4863125
Google Scholar
[22]
Bai, Y.; Bian, X.; Qin, X.; Zhang, S.; Huang, Y., Persistent local chemical bonds in intermetallic phase formation. Physics Letters A 2014, 378, (24), 1746-1750.
DOI: 10.1016/j.physleta.2014.04.037
Google Scholar
[23]
Bai, Y.; Bian, X.; Qin, X.; Qin, J.; Lv, X.; Sun, J., Structure of isomorphous liquid Ag–Au alloys. Journal of Non-Crystalline Solids 2010, 356, (35), 1823-1828.
DOI: 10.1016/j.jnoncrysol.2010.07.012
Google Scholar
[24]
Xiong, L. H.; Chen, K.; Ke, F. S.; Lou, H. B.; Yue, G. Q.; Shen, B.; Dong, F.; Wang, S. Y.; Chen, L. Y.; Wang, C. Z.; Ho, K. M.; Wang, X. D.; Lai, L. H.; Xie, H. L.; Xiao, T. Q.; Jiang, J. Z., Structural and dynamical properties of liquid Ag74Ge26 alloy studied by experiments and ab initio molecular dynamics simulation. Acta Materialia 2015, 92, 109-116.
DOI: 10.1016/j.actamat.2015.03.047
Google Scholar
[25]
Bian, X.; Qin, J.; Qin, X.; Wu, Y.; Wang, C.; Thompson, M., Structural features of liquid metallic glass former. Physics Letters A 2006, 359, (6), 718-722.
DOI: 10.1016/j.physleta.2006.07.081
Google Scholar
[26]
Cheng, S. Micro-thermal contraction of atom clusters in metal melts. PhD, Shandong University, (2004).
Google Scholar
[27]
Malis, O.; Ludwig, K. F., Kinetics of phase transitions in equiatomic CuAu. Phys. Rev. B 1999, 60, (21), 14675-14682.
DOI: 10.1103/physrevb.60.14675
Google Scholar
[28]
Jiang, S.; Li, S., Calculation of valence electron structures and cohesive energies of intermetallic compounds in Au-Cu system. The Chinese Journal of Nonferrous Metals 2010, 20, (4), 743-748.
Google Scholar
[29]
Lou, H. B.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Zhang, J.; Hu, T. D.; Mao, H. K.; Jiang, J. Z., Negative expansions of interatomic distances in metallic melts. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, (25), 10068-10072.
DOI: 10.1073/pnas.1307967110
Google Scholar
[30]
Kaban, I.; Jóvári, P.; Kokotin, V.; Shuleshova, O.; Beuneu, B.; Saksl, K.; Mattern, N.; Eckert, J.; Greer, A. L., Local atomic arrangements and their topology in Ni–Zr and Cu–Zr glassy and crystalline alloys. Acta Materialia 2013, 61, (7), 2509-2520.
DOI: 10.1016/j.actamat.2013.01.027
Google Scholar