[1]
M. Hicks, M. Thomas, Advances in Aeroengine Materials presented at Parsons Conference, Dublin, (2003).
Google Scholar
[2]
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, Advanced Engineering Materials 5(6) (2003) 419-427.
DOI: 10.1002/adem.200310095
Google Scholar
[3]
G. Lütjering, J.C. Williams, Titanium, Springer Science & Business Media2007.
Google Scholar
[4]
J. Cai, C. Cao, Alloy design and application expectation of a new generation 600 C high temperature titanium alloy, J. Aeronaut. Mater 34(4) (2014) 27.
Google Scholar
[5]
R. YANG, High temperature titanium alloysstatus and perspective, Journal of Aeronautical Materials 34(4) (2014) 1-26.
Google Scholar
[6]
J. Li, J.M. Cai, R. Duan, X. Huang, Low Cycle Fatigue Behavior of TA29 Titanium Alloy at Different Temperatures, Materials Science Forum, Trans Tech Publ, 2016, pp.353-359.
DOI: 10.4028/www.scientific.net/msf.849.353
Google Scholar
[7]
Z. Zhu, Research and Development of Advanced New Type Titanium Alloys for Aeronautical Applications [J], Aeronautical Science and Technology 1 (2012) 5-9.
Google Scholar
[8]
P. Paris, F. Erdogan, A critical analysis of crack propagation laws, Journal of basic engineering 85(4) (1963) 528-533.
DOI: 10.1115/1.3656900
Google Scholar
[9]
X.-Y. Huang, S.-C. Zhang, Y. Lu, Investigation on Fatigue Crack Propagation Behavior of TC11 and TC4 Ti Alloys at Room Temperature and 400, Journal of Aeronautical Materials 31(5) (2011) 82-85.
Google Scholar
[10]
J.D. Atkinson, Z. Chen, The effect of temperature on corrosion fatigue crack propagation in reactor pressure vessel steels, Proceedings of the sixth international symposium on environmental degradation of materials in nuclear power systems-water reactors, (1993).
DOI: 10.1002/9781118787618.ch95
Google Scholar
[11]
R. Gnanamoorthy, Y. Mutoh, Y. Mizuhara, Fatigue crack growth behavior of equiaxed, duplex and lamellar microstructure γ-base titanium aluminides, Intermetallics 4(7) (1996) 525-532.
DOI: 10.1016/0966-9795(96)00028-3
Google Scholar
[12]
L. Minxu, Z. Xiulin, Effect of stress ratio and loading frequency on corrosion fatigue crack growth behavior for GC-4 steel [J], Journal of Chinese Society for Corrosion and Protection 2 (1994).
Google Scholar
[13]
J. Lou, C. Mercer, W. Soboyejo, An investigation of the effects of temperature on fatigue crack growth in a cast lamellar Ti–45Al–2Mn–2Nb+ 0.8 vol.% TiB2 alloy, Materials Science and Engineering: A 319 (2001) 618-624.
DOI: 10.1016/s0921-5093(01)00922-4
Google Scholar
[14]
Y. Mutoh, S. Zhu, T. Hansson, S. Kurai, Y. Mizuhara, Effect of microstructure on fatigue crack growth in TiAl intermetallics at elevated temperature, Materials Science and Engineering: A 323(1-2) (2002) 62-69.
DOI: 10.1016/s0921-5093(01)01333-8
Google Scholar
[15]
N. Arakere, T. Goswami, J. Krohn, N. Ramachandran, High temperature fatigue crack growth behavior of Ti-6Al-4V, High Temperature Materials and Processes 21(4) (2002) 229-236.
DOI: 10.1515/htmp.2002.21.4.229
Google Scholar
[16]
S. Suresh, Fatigue of materials (Translated by Wang zhongguang), Beijing: Defence industry press, (1993).
Google Scholar
[17]
F. Jeglic, P. Niessen, D. Burns, Temperature dependence of fatigue crack propagation in an Al-2.6 Mg alloy, Fatigue at Elevated Temperatures, ASTM International1973.
DOI: 10.1520/stp38835s
Google Scholar
[18]
T. Yokobori, T. Aizawa, The influence of temperature and stress intensity factor upon the striation spacing and fatigue crack propagation rate of aluminum alloy, International Journal of Fracture 9(4) (1973) 489-491.
DOI: 10.1007/bf00036333
Google Scholar
[19]
T. Yokobori, A.T. Yokobori, A. Kamei, Dislocation dynamics theory for fatigue crack growth, International Journal of Fracture 11(5) (1975) 781-788.
DOI: 10.1007/bf00012896
Google Scholar