[1]
C.K. Yan, C.Z. Chi, W. Liang, et al, Research on hot rolling forming and hot formability of aluminum clad magnesium sheets, Journal of plasticity engineering. 20 (2013) 87-90.
Google Scholar
[2]
H.W. Wang, D.Q. Yi, B. Wang, et al, Hot compressive deformation simulation of Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd magnesium alloy at elevated temperatures, The Chinese Journal of Nonferrous Metals. 20 (2010) 378-384.
Google Scholar
[3]
C.M. Liu, B.F. Li, R. Wang, et al, Effect of double-extrusion on microstructure and mechanical properties of Mg-12Gd-3Y-0.6Zr alloy, The Chinese Journal of Nonferrous Metals. 20 (2010) 171-176.
Google Scholar
[4]
M. Yamasaki, T. Anan, S. Yoshimoto, et al, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scr. Mater. 53 (2005) 799-803.
DOI: 10.1016/j.scriptamat.2005.06.006
Google Scholar
[5]
Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure, Mater Trans. 48 (2007) 2986-2992.
DOI: 10.2320/matertrans.mer2007142
Google Scholar
[6]
J. Zhao, Research on tensile deformation and hot processing maps of AZ31 magnesium alloy sheet, University of Science and Technology Liaoning (2015).
Google Scholar
[7]
X. He, Z. Yu, X. Lai. A method to predict flow stress considering dynamic recrystallization during hot deformation [J]. Computational Materials Science, 2009, 44(2): 760-764.
DOI: 10.1016/j.commatsci.2008.05.021
Google Scholar
[8]
D.X. Wen, Y.C. Lin, J. Chen, et al. Effects of initial aging time on processing map and microstructures of a nickel-based superalloy [J]. Materials Science and Engineering: A, 2015, 620: 319-332.
DOI: 10.1016/j.msea.2014.10.031
Google Scholar
[9]
S. Mandal, V. Rakesh, P.V. Sivaprasad, et al, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A 500 (2009) 114-121.
DOI: 10.1016/j.msea.2008.09.019
Google Scholar
[10]
Y.C. Lin, L.T. Li, Y.Q. Jiang. A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition. Exp Mech, 52 (2012): 993-1002.
DOI: 10.1007/s11340-011-9546-4
Google Scholar
[11]
Y. C. Lin, Q. F. Li, Y. C. Xia, L. T. Li. A phenomenological constitutive model for high temperature flow stress prediction of Al-Cu-Mg alloy. Mater Sci Eng A, 534 (2012): 654-662.
DOI: 10.1016/j.msea.2011.12.023
Google Scholar
[12]
Z. P Zeng, S. Jonsson, H.J. Roven, Y.S. Zhang, Mater. Des. 30(2009) 166-169.
Google Scholar
[13]
Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. J. Mater. Process. Tech, 1998,80-81(98):513-516.
DOI: 10.1016/s0924-0136(98)00154-x
Google Scholar
[14]
ZHOU, H. T, LI, et al. Hot workability characteristics of magnesium alloy AZ80-A study using processing map[J]. Mater Sci Eng A, 2010, 527(7):2022-2026.
DOI: 10.1016/j.msea.2009.12.009
Google Scholar
[15]
Z.P. Xie, Y. Xue, Z.M. Zhang, et al, The constitutive model and processing map of Mg-Gd-Y-Zn-Zr magnesium alloy at high temperatures, Journal of plasticity engineering. 22 (2015) 153-159.
Google Scholar
[16]
Z.H. Zhou, Q.C. Fan, Z.H. Xia, et al, Constitutive relationship and hot processing maps of Mg-Gd-Y-Nb-Zr alloy, J. Mater. Sci. Technol. 33 (2017) 637-644.
DOI: 10.1016/j.jmst.2015.10.019
Google Scholar
[17]
W. Jia, S. Xu, Q. Le, et al, Modified fields-backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation, Mate. Des. 106 (2016) 120-132.
DOI: 10.1016/j.matdes.2016.05.089
Google Scholar
[18]
Y. Hu, W. Chen, X.C. Li, et al, Hot deformation behavior and hot processing map for HMn62-3-3 alloy, Materials Review. 31 (2017) 122-149.
Google Scholar
[19]
C.M. Sellars, W.J. Mctegart, On the mechanism of hot deformation, Acta Metall. 14 (1966) 1136-1138.
DOI: 10.1016/0001-6160(66)90207-0
Google Scholar
[20]
X.M. Chen, Y.C. Lin, D.X. Wen, et al, Dynamic recrystallization behavior of a typical nickle-based superalloy during hot deformation, Mate. Des. 57 (2014) 568-577.
DOI: 10.1016/j.matdes.2013.12.072
Google Scholar
[21]
C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15 (1944) 22-32.
DOI: 10.1063/1.1707363
Google Scholar
[22]
R. Raj, Development of a processing map for use in warm-forming and hot-forming process, Metall. Trans A. 12 (1981) 1089-1097.
DOI: 10.1007/bf02643490
Google Scholar
[23]
Y.V.R.T. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev. 43 (1998) 243-258.
Google Scholar
[24]
A. Momeni, K. Dehghani, Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps, Mater. Sci. Eng. A 527 (2010) 5467-5473.
DOI: 10.1016/j.msea.2010.05.079
Google Scholar
[25]
N. Srinivasa, Y.V.R.T. Prasad, Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps, J. Mater. Process. Technol. 51 (1995) 171-192.
DOI: 10.1016/0924-0136(94)01602-w
Google Scholar
[26]
Z.Y. Zhao, M.Y. Sun, J.L. Sun, Study on hot deformation behavior and hot processing map of H13 steel containing rare earth, Materials Review. 31 (2018) 149-155.
Google Scholar
[27]
X.P. Zhang, The hot deformation behavior and hot processing map of Cr-Mn-Ni-Cu-N auetenitic stainless steel, Lanzhou University of Technology (2009).
Google Scholar