Constitutive Equation and Hot Processing Map for Tensile Test of Mg-13Gd-4Y-2Zn-0.5Zr Alloy at Elevated Temperature

Article Preview

Abstract:

The high temperature tensile behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy was investigated at deformation temperature of 400-520 °C and strain rate of 0.001-0.5 s-1, and the stress-strain curves were obtained by using INSTRON 3382. The high temperature tensile constitutive model and hot processing map of the alloy were established, and the reliability of the hot processing map was further verified by analyzing the microstructure of the deformed alloy. The results showed that the dynamic recrystallization (DRX) occurred of Mg-13Gd-4Y-2Zn-0.5Zr alloy during the tensile tests under high temperature conditions, and its peak stress decreased with the increase of deformation temperature or strain rate. The Arrhenius equation can be used to fit the rheological behavior of the alloy. The thermal deformation activation energy Q was 259.13kJ/mol, and the maximum error between the model and the experimental data was less than 9%. It can be concluded that the optimum deformation parameters of the alloy were temperature of 500-520 °C and strain rate of 0.01-0.001 s-1 based on the dynamic material model and hot processing map.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-247

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.K. Yan, C.Z. Chi, W. Liang, et al, Research on hot rolling forming and hot formability of aluminum clad magnesium sheets, Journal of plasticity engineering. 20 (2013) 87-90.

Google Scholar

[2] H.W. Wang, D.Q. Yi, B. Wang, et al, Hot compressive deformation simulation of Mg-6.3Zn-0.7Zr-0.9Y-0.3Nd magnesium alloy at elevated temperatures, The Chinese Journal of Nonferrous Metals. 20 (2010) 378-384.

Google Scholar

[3] C.M. Liu, B.F. Li, R. Wang, et al, Effect of double-extrusion on microstructure and mechanical properties of Mg-12Gd-3Y-0.6Zr alloy, The Chinese Journal of Nonferrous Metals. 20 (2010) 171-176.

Google Scholar

[4] M. Yamasaki, T. Anan, S. Yoshimoto, et al, Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scr. Mater. 53 (2005) 799-803.

DOI: 10.1016/j.scriptamat.2005.06.006

Google Scholar

[5] Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure, Mater Trans. 48 (2007) 2986-2992.

DOI: 10.2320/matertrans.mer2007142

Google Scholar

[6] J. Zhao, Research on tensile deformation and hot processing maps of AZ31 magnesium alloy sheet, University of Science and Technology Liaoning (2015).

Google Scholar

[7] X. He, Z. Yu, X. Lai. A method to predict flow stress considering dynamic recrystallization during hot deformation [J]. Computational Materials Science, 2009, 44(2): 760-764.

DOI: 10.1016/j.commatsci.2008.05.021

Google Scholar

[8] D.X. Wen, Y.C. Lin, J. Chen, et al. Effects of initial aging time on processing map and microstructures of a nickel-based superalloy [J]. Materials Science and Engineering: A, 2015, 620: 319-332.

DOI: 10.1016/j.msea.2014.10.031

Google Scholar

[9] S. Mandal, V. Rakesh, P.V. Sivaprasad, et al, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A 500 (2009) 114-121.

DOI: 10.1016/j.msea.2008.09.019

Google Scholar

[10] Y.C. Lin, L.T. Li, Y.Q. Jiang. A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al-Zn-Mg-Cu alloy under hot working condition. Exp Mech, 52 (2012): 993-1002.

DOI: 10.1007/s11340-011-9546-4

Google Scholar

[11] Y. C. Lin, Q. F. Li, Y. C. Xia, L. T.  Li. A phenomenological constitutive model for high temperature flow stress prediction of Al-Cu-Mg alloy. Mater Sci Eng A, 534 (2012): 654-662.

DOI: 10.1016/j.msea.2011.12.023

Google Scholar

[12] Z. P Zeng, S. Jonsson, H.J. Roven, Y.S. Zhang, Mater. Des. 30(2009) 166-169.

Google Scholar

[13] Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. J. Mater. Process. Tech, 1998,80-81(98):513-516.

DOI: 10.1016/s0924-0136(98)00154-x

Google Scholar

[14] ZHOU, H. T, LI, et al. Hot workability characteristics of magnesium alloy AZ80-A study using processing map[J]. Mater Sci Eng A, 2010, 527(7):2022-2026.

DOI: 10.1016/j.msea.2009.12.009

Google Scholar

[15] Z.P. Xie, Y. Xue, Z.M. Zhang, et al, The constitutive model and processing map of Mg-Gd-Y-Zn-Zr magnesium alloy at high temperatures, Journal of plasticity engineering. 22 (2015) 153-159.

Google Scholar

[16] Z.H. Zhou, Q.C. Fan, Z.H. Xia, et al, Constitutive relationship and hot processing maps of Mg-Gd-Y-Nb-Zr alloy, J. Mater. Sci. Technol. 33 (2017) 637-644.

DOI: 10.1016/j.jmst.2015.10.019

Google Scholar

[17] W. Jia, S. Xu, Q. Le, et al, Modified fields-backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation, Mate. Des. 106 (2016) 120-132.

DOI: 10.1016/j.matdes.2016.05.089

Google Scholar

[18] Y. Hu, W. Chen, X.C. Li, et al, Hot deformation behavior and hot processing map for HMn62-3-3 alloy, Materials Review. 31 (2017) 122-149.

Google Scholar

[19] C.M. Sellars, W.J. Mctegart, On the mechanism of hot deformation, Acta Metall. 14 (1966) 1136-1138.

DOI: 10.1016/0001-6160(66)90207-0

Google Scholar

[20] X.M. Chen, Y.C. Lin, D.X. Wen, et al, Dynamic recrystallization behavior of a typical nickle-based superalloy during hot deformation, Mate. Des. 57 (2014) 568-577.

DOI: 10.1016/j.matdes.2013.12.072

Google Scholar

[21] C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15 (1944) 22-32.

DOI: 10.1063/1.1707363

Google Scholar

[22] R. Raj, Development of a processing map for use in warm-forming and hot-forming process, Metall. Trans A. 12 (1981) 1089-1097.

DOI: 10.1007/bf02643490

Google Scholar

[23] Y.V.R.T. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, Int. Mater. Rev. 43 (1998) 243-258.

Google Scholar

[24] A. Momeni, K. Dehghani, Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps, Mater. Sci. Eng. A 527 (2010) 5467-5473.

DOI: 10.1016/j.msea.2010.05.079

Google Scholar

[25] N. Srinivasa, Y.V.R.T. Prasad, Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps, J. Mater. Process. Technol. 51 (1995) 171-192.

DOI: 10.1016/0924-0136(94)01602-w

Google Scholar

[26] Z.Y. Zhao, M.Y. Sun, J.L. Sun, Study on hot deformation behavior and hot processing map of H13 steel containing rare earth, Materials Review. 31 (2018) 149-155.

Google Scholar

[27] X.P. Zhang, The hot deformation behavior and hot processing map of Cr-Mn-Ni-Cu-N auetenitic stainless steel, Lanzhou University of Technology (2009).

Google Scholar